www.mrc-papers.com

CLASSIFIED

International Examinations Papers

Mob: +974 55249797 / 55258711 E-mail:rashed.saba@gmail.com

Mechanics TOPIC- Kinematics Straight line motion

1 A car of mass 1200 kg travels on a horizontal straight road with constant acceleration $a \text{ m s}^{-2}$.

(i) Given that the car's speed increases from $10 \,\mathrm{m\,s^{-1}}$ to $25 \,\mathrm{m\,s^{-1}}$ while travelling a distance of $525 \,\mathrm{m}$, find the value of a.

The car's engine exerts a constant driving force of 900 N. The resistance to motion of the car is constant and equal to RN.

(ii) Find R.

[2]

A particle P moves in a straight line that passes through the origin O. The velocity of P at time t seconds is $v \text{m s}^{-1}$, where $v = 20t - t^3$. At time t = 0 the particle is at rest at a point whose displacement from O is -36 m.

(i) Find an expression for the displacement of P from O in terms of t.

[3]

(ii) Find the displacement of P from O when t = 4.

[1]

(iii) Find the values of t for which the particle is at O.

[3]

03

John Start

Particles P and Q start from points A and B respectively, at the same instant, and move towards each other in a horizontal straight line. The initial speeds of P and Q are $5 \,\mathrm{m \, s^{-1}}$ and $3 \,\mathrm{m \, s^{-1}}$ respectively. The accelerations of P and Q are constant and equal to $4 \,\mathrm{m \, s^{-2}}$ and $2 \,\mathrm{m \, s^{-2}}$ respectively (see diagram).

- (i) Find the speed of P at the instant when the speed of P is 1.8 times the speed of Q. [4]
- (ii) Given that AB = 51 m, find the time taken from the start until P and Q meet. [4]

4 The velocity of a particle ts after it starts from rest is $v \text{m s}^{-1}$, where $v = 1.25t - 0.05t^2$. Find

(i) the initial acceleration of the particle,

[2]

(ii) the displacement of the particle from its starting point at the instant when its acceleration is $0.05 \,\mathrm{m\,s^{-2}}$.

Particles P and Q are projected vertically upwards, from different points on horizontal ground, with velocities of $20 \,\mathrm{m \, s^{-1}}$ and $25 \,\mathrm{m \, s^{-1}}$ respectively. Q is projected $0.4 \,\mathrm{s}$ later than P. Find

(i) the time for which P's height above the ground is greater than 15 m,

[3]

(ii) the velocities of P and Q at the instant when the particles are at the same height.

[5]

6 (i) A man walks in a straight line from A to B with constant acceleration 0.004 m s⁻². His speed at A is 1.8 m s⁻¹ and his speed at B is 2.2 m s⁻¹. Find the time taken for the man to walk from A to B, and find the distance AB.

- (ii) A woman cyclist leaves A at the same instant as the man. She starts from rest and travels in a straight line to B, reaching B at the same instant as the man. At time ts after leaving A the cyclist's speed is $k(200t t^2)$ m s⁻¹, where k is a constant. Find
 - (a) the value of k, [4]
 - (b) the cyclist's speed at B. [1]
- (iii) Sketch, using the same axes, the velocity-time graphs for the man's motion and the woman's motion from A to B. [3]

X-54

7

A motorcyclist starts from rest at A and travels in a straight line. For the first part of the motion, the motorcyclist's displacement x metres from A after t seconds is given by $x = 0.6t^2 - 0.004t^3$.

(i) Show that the motorcyclist's acceleration is zero when t = 50 and find the speed $V \,\mathrm{m\,s}^{-1}$ at this time.

For $t \ge 50$, the motorcyclist travels at constant speed $V \,\mathrm{m\,s^{-1}}$.

(ii) Find the value of t for which the motorcyclist's average speed is $27.5 \,\mathrm{m\,s^{-1}}$. [5]

A car travels in a straight line with constant acceleration $a \, \mathrm{m \, s^{-2}}$. It passes the points A, B and C, in this order, with speeds $5 \, \mathrm{m \, s^{-1}}$, $7 \, \mathrm{m \, s^{-1}}$ and $8 \, \mathrm{m \, s^{-1}}$ respectively. The distances AB and BC are $d_1 \, \mathrm{m}$ and $d_2 \, \mathrm{m}$ respectively.

(i) Write down an equation connecting

- (a) d_1 and a,
- **(b)** d_2 and a.
- (ii) Hence find d_1 in terms of d_2 .

[2]

[2]

A motorcyclist starts from rest at A and travels in a straight line until he comes to rest again at B. The velocity of the motorcyclist t seconds after leaving A is vm s⁻¹, where $v = t - 0.01t^2$. Find

(i) the time taken for the motorcyclist to travel from A to B,

[2]

(ii) the distance AB.

[3]

3 A particle slides down a smooth plane inclined at an angle of α° to the horizontal. The particle passes through the point A with speed 1.5 m s⁻¹, and 1.2 s later it passes through the point B with speed 4.5 m s⁻¹. Find

(i) the acceleration of the particle,

[2]

(ii) the value of α .

[2]

04

とうか

A particle slides up a line of greatest slope of a smooth plane inclined at an angle α° to the horizontal. The particle passes through the points A and B with speeds $2.5\,\mathrm{m\,s^{-1}}$ and $1.5\,\mathrm{m\,s^{-1}}$ respectively. The distance AB is $4\,\mathrm{m}$ (see diagram). Find

(i) the deceleration of the particle,

[2]

(ii) the value of α .

[2]