www.mrc-papers.com

CLASSIFIED

International Examinations Papers

Mob: +974 55249797 / 55258711 E-mail:rashed.saba@gmail.com

Pure Mathematics-1

TOPIC- COORDINATE GEOMETRY

Find the coordinates of the point at which the perpendicular bisector of the line joining (2, 7) to (10, 3) meets the x-axis.

The point A has coordinates (-1, -5) and the point B has coordinates (7, 1). The perpendicular bisector of AB meets the x-axis at C and the y-axis at D. Calculate the length of CD. [6] J-12-12-4

- 3 The point A has coordinates (3, 1) and the point B has coordinates (-21, 11). The point C is the mid-point of AB.

 N-13-13-3
 - (i) Find the equation of the line through A that is perpendicular to y = 2x 7.

(ii) Find the distance AC.

[3]

2-11-11-16

C is the mid-point of the line joining A(14, -7) to B(-6, 3). The line through C perpendicular to AB crosses the y-axis at D.

(i) Find the equation of the line CD, giving your answer in the form y = mx + c.

[4]

(ii) Find the distance AD.

A curve has equation $y = 3x - \frac{4}{x}$ and passes through the points A(1, -1) and B(4, 11). At each of the points C and D on the curve, the tangent is parallel to AB. Find the equation of the perpendicular bisector of CD.

7 The coordinates of points A and B are (a, 2) and (3, b) respectively, where a and b are constants. The distance AB is $\sqrt{(125)}$ units and the gradient of the line AB is 2. Find the possible values of a and of b. $\sqrt{-|\psi-i|} \sqrt{2} \sqrt{|b|} \qquad [6]$

The line $\frac{x}{a} + \frac{y}{b} = 1$, where a and b are positive constants, intersects the x- and y-axes at the points A and B respectively. The mid-point of AB lies on the line 2x + y = 10 and the distance AB = 10. Find the values of a and b.

7 The curve $y = \frac{10}{2x+1} - 2$ intersects the x-axis at A. The tangent to the curve at A intersects the y-axis at C. $\sqrt{-13-/2-7}$

2

(i) Show that the equation of AC is 5y + 4x = 8.

[5]

(ii) Find the distance AC.

- 7 The line L_1 has equation 2x + y = 8. The line L_2 passes through the point A(7, 4) and is perpendicular to L_1 .
 - (i) Find the equation of L_2 .

[4]

(ii) Given that the lines L_1 and L_2 intersect at the point B, find the length of AB.

[4]

8 The equation of a curve is $y = 5 - \frac{8}{x}$.

(i) Show that the equation of the normal to the curve at the point P(2, 1) is 2y + x = 4.

[4]

This normal meets the curve again at the point Q.

(ii) Find the coordinates of Q.

[3]

(iii) Find the length of PQ.

- The line L_1 passes through the points A(2, 5) and B(10, 9). The line L_2 is parallel to L_1 and passes through the origin. The point C lies on L_2 such that AC is perpendicular to L_2 . Find
 - (i) the coordinates of C,

7-11-12-7

[5]

(ii) the distance AC.

8 Three points have coordinates A(0, 7), B(8, 3) and C(3k, k). Find the value of the constant k for which

150

(i) C lies on the line that passes through A and B,

[4]

(ii) C lies on the perpendicular bisector of AB.

[4]

T-15-12-66

6 Points A, B and C have coordinates A(-3, 7), B(5, 1) and C(-1, k), where k is a constant.

(i) Given that AB = BC, calculate the possible values of k.

[3]

The perpendicular bisector of AB intersects the x-axis at D.

(ii) Calculate the coordinates of D.

[5]

Three points have coordinates A(2, 6), B(8, 10) and C(6, 0). The perpendicular bisector of AB7

(i) the equation of the perpendicular bisector of AB in the form ax + by = c,

[4]

(ii) the coordinates of D.

[4]

The point C lies on the perpendicular bisector of the line joining the points A(4, 6) and B(10, 2).

(i) Find the equation of the perpendicular bisector of AB.

7-15-12-7

[4]

(ii) Calculate the coordinates of C.

[3]

- 6 A is the point (a, 2a 1) and B is the point (2a + 4, 3a + 9), where a is a constant.
 - (i) Find, in terms of a, the gradient of a line perpendicular to AB.

[3]

(ii) Given that the distance AB is $\sqrt{(260)}$, find the possible values of a.

[4]

- 7 The point A has coordinates (-1, 6) and the point B has coordinates (7, 2). $\sqrt{-13-11-7}$
 - (i) Find the equation of the perpendicular bisector of AB, giving your answer in the form $\mathbf{v} = \mathbf{M}\mathbf{x} + \mathbf{c}$.
 - (ii) A point C on the perpendicular bisector has coordinates (P, Q). The distance OC is 2 units, where O is the origin. Write down two equations involving P and Q and hence find the coordinates of the possible positions of C. [5]

Three points, A, B and C, are such that B is the mid-point of AC. The coordinates of A are (2, m) and the coordinates of B are (n, -6), where m and n are constants.

N-16-18-CG

(i) Find the coordinates of C in terms of m and n.

[2]

The line y = x + 1 passes through C and is perpendicular to AB.

(ii) Find the values of m and n.

[5]

21-5-13

The point A has coordinates (p, 1) and the point B has coordinates (9, 3p + 1), where p is a constant.

(i) For the case where the distance AB is 13 units, find the possible values of p.

[3]

(ii) For the case in which the line with equation 2x + 3y = 9 is perpendicular to AB, find the value of p.

11 Triangle ABC has vertices at A(-2, -1), B(4, 6) and C(6, -3).

[6]

(ii) The point D is the point on AB such that CD is perpendicular to AB. Calculate the x-coordinate of D.

6 The line with gradient -2 passing through the point P(3t, 2t) intersects the x-axis at A and the y-axis at B.

(i) Find the area of triangle AOB in terms of t.

[3]

The line through P perpendicular to AB intersects the x-axis at C.

(ii) Show that the mid-point of PC lies on the line y = x.

[4]

- The line 4x + ky = 20 passes through the points A(8, -4) and B(b, 2b), where k and b are constants. 4 (i) Find the values of k and b. N-14-11-4

[4]

(ii) Find the coordinates of the mid-point of AB.

[1]

- 7 A curve has equation $y = x^2 4x + 4$ and a line has equation y = mx, where m is a constant.
 - (i) For the case where m = 1, the curve and the line intersect at the points A and B. Find the coordinates of the mid-point of AB.
 - (ii) Find the non-zero value of m for which the line is a tangent to the curve, and find the coordinates of the point where the tangent touches the curve. [5]

- **2** Points A, B and C have coordinates (2, 5), (5, -1) and (8, 6) respectively.
 - (i) Find the coordinates of the mid-point of AB.

[1]

(ii) Find the equation of the line through C perpendicular to AB. Give your answer in the form ax + by + c = 0.

The equation of a curve is $y = 3 + 4x - x^2$.

(i) Show that the equation of the normal to the curve at the point (3, 6) is 2y = x + 9.

[4]

- (ii) Given that the normal meets the coordinate axes at points A and B, find the coordinates of the
- (iii) Find the coordinates of the point at which the normal meets the curve again.

[4]

- The coordinates of A are (-3, 2) and the coordinates of C are (5, 6). The mid-point of AC is M and the perpendicular bisector of \overrightarrow{AC} cuts the x-axis at B.
 - 7-12-11-9
 - (i) Find the equation of MB and the coordinates of B.

[5]

(ii) Show that AB is perpendicular to BC.

[2]

(iii) Given that ABCD is a square, find the coordinates of D and the length of AD.

7

00

The diagram shows three points A(2, 14), B(14, 6) and C(7, 2). The point X lies on AB, and CX is perpendicular to AB. Find, by calculation, J-13-13-7

(1) the coordinates of X,

(II) the ratio AX : XB.

[6] [2]

8

The diagram shows points A, B and C lying on the line 2y = x + 4. The point A lies on the y-axis and AB = BC. The line from D(10, -3) to B is perpendicular to AC. Calculate the coordinates of B and C.

5

The three points A(1, 3), B(13, 11) and C(6, 15) are shown in the diagram. The perpendicular from C to AB meets AB at the point D. Find

(i) the equation of CD,

(ii) the coordinates of D.

[3]

[4]

Copyright@MRC* :(9709-**PM-1**)-2017

5

The diagram shows a triangle ABC in which A has coordinates (1, 3), B has coordinates (5, 11) and angle ABC is 90° . The point X(4, 4) lies on AC. Find

(i) the equation of BC,

[3]

(ii) the coordinates of C.

[3]

4

In the diagram, A is the point (-1, 3) and B is the point (3, 1). The line L_1 passes through A and is parallel to OB. The line L_2 passes through B and is perpendicular to AB. The lines L_1 and L_2 meet at C. Find the coordinates of C.

6

2

The three points A(3, 8), B(6, 2) and C(10, 2) are shown in the diagram. The point D is such that the line DA is perpendicular to AB and DC is parallel to AB. Calculate the coordinates of D. [7]

6

The diagram shows a rectangle ABCD. The point A is (2, 14), B is (-2, 8) and C lies on the x-axis.

(i) the equation of BC,

[4]

(ii) the coordinates of C and D.

[3]

9

The diagram shows a rectangle ABCD. The point A is (0, -2) and C is (12, 14). The diagonal BD is parallel to the x-axis.

(i) Explain why the y-coordinate of D is 6.

[1]

The x-coordinate of D is h.

(ii) Express the gradients of AD and CD in terms of h.

[3]

(iii) Calculate the x-coordinates of D and B.

[4]

(iv) Calculate the area of the rectangle ABCD.

[3]

5

The diagram shows a rectangle ABCD in which point A is (0, 8) and point B is (4, 0). The diagonal AC has equation 8y + x = 64. Find, by calculation, the coordinates of C and D. [7]

8

The diagram shows a rhombus ABCD in which the point A is (-1, 2), the point C is (5, 4) and the point B lies on the y-axis. Find

(i) the equation of the perpendicular bisector of AC,

[3]

(ii) the coordinates of B and D,

[3]

(iii) the area of the rhombus.

[3]

5

The diagram shows a rhombus ABCD. The points B and D have coordinates (2, 10) and (6, 2) respectively, and A lies on the x-axis. The mid-point of BD is M. Find, by calculation, the coordinates of each of M, A and C.

11

The diagram shows a parallelogram ABCD, in which the equation of AB is y = 3x and the equation of AD is 4y = x + 11. The diagonals AC and BD meet at the point $E\left(6\frac{1}{2}, 8\frac{1}{2}\right)$. Find, by calculation, the coordinates of A, B, C and D.

Fob -- 6872 5557 2570 (500,507 1) Lamail repredicabil@gmc4.500

9

The diagram shows a trapezium ABCD in which AB is parallel to DC and angle BAD is 90°. The coordinates of A, B and C are (2, 6), (5, -3) and (8, 3) respectively.

(i) Find the equation of AD.

[3]

(ii) Find, by calculation, the coordinates of D.

[3]

The point E is such that ABCE is a parallelogram.

(iii) Find the length of BE.

5

The diagram shows a trapezium ABCD in which BC is parameter coordinates of A, B and D are (2, 0), (4, 6) and (12, 5) respectively. The diagram shows a trapezium ABCD in which BC is parallel to AD and angle $BCD = 90^{\circ}$. The

(i) Find the equations of BC and CD.

[5]

(ii) Calculate the coordinates of C.

9

The diagram shows a quadrilateral ABCD in which the point A is (-1, -1), the point B is (3, 6) and the point C is (9, 4). The diagonals AC and BD intersect at M. Angle $BMA = 90^{\circ}$ and BM = MD. Calculate

(i) the coordinates of M and D,

[7]

(ii) the ratio AM : MC.

8

Se o

The diagram shows part of the curve $y = \frac{2}{1-x}$ and the line y = 3x + 4. The curve and the line meet at points A and B.

(i) Find the coordinates of A and B.

[4]

(ii) Find the length of the line AB and the coordinates of the mid-point of AB.

[3]

11

DIFF & Const

The diagram shows the curve $y = (6x + 2)^{\frac{1}{3}}$ and the point A(1, 2) which lies on the curve. The tangent to the curve at A cuts the y-axis at B and the normal to the curve at A cuts the x-axis at C.

(i) Find the equation of the tangent AB and the equation of the normal AC.

[5]

(ii) Find the distance BC.

[3]

(iii) Find the coordinates of the point of intersection, E, of OA and BC, and determine whether E is the mid-point of OA.

7 18-13 03

10 A curve is such that $\frac{dy}{dx} = \frac{2}{a}x^{-\frac{1}{2}} + ax^{-\frac{3}{2}}$, where a is a positive constant. The point $A(a^2, 3)$ lies on the curve. Find, in terms of a,

(i) the equation of the tangent to the curve at A, simplifying your answer,

[3]

(ii) the equation of the curve.

[4]

It is now given that B(16, 8) also lies on the curve.

(iii) Find the value of a and, using this value, find the distance AB.

[5]

