www.mrc-papers.com

Mob: +974 55249797 / 55258711 E-mail:rashed.saba@gmail.com

Pure Mathematics-1 TOPIC- Differentiation Stationary Point (TP) Maxima, Minima

A curve has equation $y = 8x + (2x - 1)^{-1}$. Find the values of x at which the curve has a stationary point and determine the nature of each stationary point, justifying your answers. [7]

7-16-13-5

Totalia I Bamination Paper

Variables u, x and y are such that u = 2x(y - x) and x + 3y = 12. Express u in terms of x and hence find the stationary value of u.

International Examinations Papers

3 The non-zero variables x, y and u are such that $u = x^2y$. Given that y + 3x = 9, find the stationary value of u and determine whether this is a maximum or a minimum value. [7]

7-13-13-6

Copyright@MRC® :(9709-**PM-1**)-2017

+97455258711

rashed.saba@gmail.com

4 The equation of a curve is $y = x^4 + 4x + 9$.

(i) Find the coordinates of the stationary point on the curve and determine its nature.

[4]

[3]

(ii) Find the area of the region enclosed by the curve, the x-axis and the lines x = 0 and x = 1.

5 A curve has equation $y = 2x + \frac{1}{(x-1)^2}$. Verify that the curve has a stationary point at x = 2 and determine its nature.

DIFFERENTIATION-STATIONARY POINT

- The horizontal base of a solid prism is an equilateral triangle of side x cm. The sides of the prism are vertical. The height of the prism is h cm and the volume of the prism is 2000 cm³.
 - (i) Express h in terms of x and show that the total surface area of the prism, $A \text{ cm}^2$, is given by

$A = \frac{\sqrt{3}}{2}x^2 + \frac{24000}{\sqrt{3}}x^{-1}.$	[3]
	REARRANGED & C.
	Annao Rashed Cicli
	Mob: +974 55373676 / 33787500 E-mall:chymrc.muhammad@gmail.com

••••••		•••••	•••••
•••••			•••••
	•		
•••••			

(ii) Given that x can vary, find the value of x for which A has a stationary value. [3]

(iii) Determine, showing all necessary working, the nature of this stationary value. [2]

The equation of a curve is $y = 2 + \frac{3}{2x - 1}$.

(i) Obtain an expression for $\frac{dy}{dx}$.

At the point P on the curve, x = 2.

(iv) A point moves along the curve in such a way that its x-coordinate is decreasing at a constant rate of 0.06 units per second. Find the rate of change of the y-coordinate as the point passes through P.

8 A curve is such that

$$\frac{dy}{dx} = 2(3x+4)^{\frac{3}{2}} - 6x - 8. \qquad N-12-3-8$$

(i) Find $\frac{d^2y}{dx^2}$.

[2]

(ii) Verify that the curve has a stationary point when x = -1 and determine its nature.

[2]

(iii) It is now given that the stationary point on the curve has coordinates (-1, 5). Find the equation of the curve.

Mob: +974 55373670 / 33797560 E-mail:chymrc.nwhammad@onssil.com

- 9 A curve is such that $\frac{dy}{dx} = \frac{2}{\sqrt{x}} 1$ and P(9, 5) is a point on the curve.
 - (i) Find the equation of the curve. [4]
 - (ii) Find the coordinates of the stationary point on the curve. [3]
 - (iii) Find an expression for $\frac{d^2y}{dx^2}$ and determine the nature of the stationary point. [2]
 - (iv) The normal to the curve at P makes an angle of $\tan^{-1} k$ with the positive x-axis. Find the value of k.

International Examinations Papers

word +ere barrate / 0 / 33 / brook E-mail chymro.muhammad@qma)(.com

- 10 It is given that a curve has equation y = f(x), where $f(x) = x^3 2x^2 + x$. $\sqrt{-\frac{2}{1}} \frac{1}{10}$
 - (i) Find the set of values of x for which the gradient of the curve is less than 5.

[4]

(ii) Find the values of f(x) at the two stationary points on the curve and determine the nature of each stationary point.

- The volume of a solid circular cylinder of radius r cm is 250π cm³. $\sqrt{3-12-8}$
 - (i) Show that the total surface area, S cm², of the cylinder is given by

$$S = 2\pi r^2 + \frac{500\pi}{r}.$$
 [2]

- (ii) Given that r can vary, find the stationary value of S.
- (iii) Determine the nature of this stationary value.

[4] [2]

12 A curve is such that $\frac{dy}{dx} = x^{\frac{1}{2}} - x^{-\frac{1}{2}}$. The curve passes through the point $(4, \frac{2}{3})$.

- (i) Find the equation of the curve.
- (ii) Find $\frac{d^2y}{dx^2}$.
- (iii) Find the coordinates of the stationary point and determine its nature.

The variables x, y and z can take only positive values and are such that $\sqrt{-1/-1/-1}$

$$z = 3x + 2y$$
 and $xy = 600$.

- (i) Show that $z = 3x + \frac{1200}{x}$.
- (ii) Find the stationary value of z and determine its nature.

[1]

[6]

DIFFERENTIATION-STATIONARY POINT

14	The	equation of a curve is $y = 8\sqrt{x} - 2x$.	
~	(i)	Find the coordinates of the stationary point of the curve.	TADD: +874 55979970 / 33787568-mail.com
12-D-51			
7-7	(ii)	Find an expression for $\frac{d^2y}{dx^2}$ and hence, or otherwise, determine the na	ture of the stationary point. [2]
	(iii)	Find the values of x at which the line $y = 6$ meets the curve.	[3]
	(iv)	State the set of values of k for which the line $y = k$ does not meet the	curve. [1]

- 1 S A curve is such that $\frac{dy}{dx} = 3x^{\frac{1}{2}} 6$ and the point (9, 2) lies on the curve. $\sqrt{-10-11-6}$
 - (i) Find the equation of the curve.

[4]

(ii) Find the x-coordinate of the stationary point on the curve and determine the nature of the stationary point.

A curve has equation $y = \frac{k^2}{x+2} + x$, where k is a positive constant. Find, in terms of k, the values of x for which the curve has stationary points and determine the nature of each stationary point. [8]

International Examinations Papers

- 17. The base of a cuboid has sides of length x cm and 3x cm. The volume of the cuboid is 288 cm^3 .
 - (i) Show that the total surface area of the cuboid, $A \text{ cm}^2$, is given by $\sqrt{-14-13-9}$

$$A = 6x^2 + \frac{768}{x}.$$

(ii) Given that x can vary, find the stationary value of A and determine its nature.

18 The equation of a curve is $y = x^3 + px^2$, where p is a positive constant.

(i) Show that the origin is a stationary point on the curve and find the coordinates of the other stationary point in terms of p. [4]

11-15-15

(ii) Find the nature of each of the stationary points.

Another curve has equation $y = x^3 + px^2 + px$.

(iii) Find the set of values of p for which this curve has no stationary points.

- The function f is defined for x > 0 and is such that $f'(x) = 2x \frac{2}{x^2}$. The curve y = f(x) passes through the point P(2, 6).
 - (i) Find the equation of the normal to the curve at P.

[3]

(ii) Find the equation of the curve.

[4]

(iii) Find the x-coordinate of the stationary point and state with a reason whether this point is a maximum or a minimum. [4]

- **20** A curve has equation y = f(x) and is such that $f'(x) = 3x^{\frac{1}{2}} + 3x^{-\frac{1}{2}} 10$.
 - (i) By using the substitution $u = x^{\frac{1}{2}}$, or otherwise, find the values of x for which the curve y = f(x) has stationary points.
 - (ii) Find f''(x) and hence, or otherwise, determine the nature of each stationary point.
 - (iii) It is given that the curve y = f(x) passes through the point (4, -7). Find f(x). [4]

A curve y = f(x) has a stationary point at (3, 7) and is such that $f''(x) = 36x^{-3}$.

(i) State, with a reason, whether this stationary point is a maximum or a minimum.

[1]

(ii) Find f'(x) and f(x).

[7]

A function f is defined for $x \in \mathbb{R}$ and is such that f'(x) = 2x - 6. The range of the function is given by $f(x) \ge -4.$

(i) State the value of x for which f(x) has a stationary value.

[1]

(ii) Find an expression for f(x) in terms of x.

[4]

Copyright@MRC®: (9709-PM-1)-2017

+97455258711

rashed.saba@gmail.com

- A curve y = f(x) has a stationary point at P(3, -10). It is given that $f'(x) = 2x^2 + kx 12$, where k is a constant.
 - (i) Show that k = -2 and hence find the x-coordinate of the other stationary point, Q.

[4]

(ii) Find f''(x) and determine the nature of each of the stationary points P and Q.

[2]

(iii) Find f(x).

The curve y = f(x) has a stationary point at (2, 10) and it is given that $f''(x) = \frac{12}{x^3}$.

[6]

[2]

[2]

- (i) Find f(x).
- (ii) Find the coordinates of the other stationary point.
- (iii) Find the nature of each of the stationary points.

Copyright@MRC® :(9709-**PM-1**)-2017

+97455258711

rashed.saba@gmail.com

- A curve is such that $\frac{d^2y}{dx^2} = \frac{24}{x^3} 4$. The curve has a stationary point at P where x = 2. 25

 - (i) State, with a reason, the nature of this stationary point.

[1]

(ii) Find an expression for $\frac{dy}{dx}$.

[4]

(iii) Given that the curve passes through the point (1, 13), find the consideration point P.

Mob: +974 55373670 / 33787500 E-mell:ehymrc.muhammad@gmail.c