www.mrc-papers.com

Mechanics TOPIC- Kinematics

Differentiation-Integration

Copyright@MRC® :(9709/04 -M-1)-2017

+97455258711

rashed.saba@gmail.com

01

A particle P is held at rest at a fixed point O and then released. P falls freely under gravity until it reaches the point A which is 1.25 m below O.

(i) Find the speed of P at A and the time taken for P to reach A.

[3]

The particle continues to fall, but now its downward acceleration t seconds after passing through A is (10-0.3t) m s⁻².

(ii) Find the total distance P has fallen, 3 s after being released from O.

[7]

02 5 - 8 - R

A particle P starts from rest at the point A at time t = 0, where t is in seconds, and moves in a straight line with constant acceleration a m s⁻² for 10 s. For $10 \le t \le 20$, P continues to move along the line with velocity v m s⁻¹, where $v = \frac{800}{t^2} - 2$. Find

(i) the speed of P when t = 10, and the value of a,

[2]

(ii) the value of t for which the acceleration of P is $-a \,\mathrm{m\,s^{-2}}$,

[4]

(iii) the displacement of P from A when t = 20.

[6]

A particle P travels in a straight line from A to D, passing through the points B and C. For the section AB the velocity of the particle is $(0.5t - 0.01t^2)$ m s⁻¹, where t s is the time after leaving A.

(i) Given that the acceleration of P at B is $0.1 \,\mathrm{m\,s^{-2}}$, find the time taken for P to travel from A to B.

The acceleration of P from B to C is constant and equal to 0.1 m s^{-2} .

(ii) Given that P reaches C with speed $14 \,\mathrm{m \, s^{-1}}$, find the time taken for P to travel from B to C. [3]

P travels with constant deceleration $0.3 \,\mathrm{m\,s^{-2}}$ from C to D. Given that the distance CD is 300 m, find

(iii) the speed with which P reaches D,

[2]

(iv) the distance AD.

[6]

A particle moves in a straight line. Its displacement t seconds after leaving the fixed point O is t metres, where t is t in t metres, where t is t is t metres, where t is t is t metres, where t is t is t metres, where t is t metres, t

(i) the speed of the particle when t = 10,

[3]

(ii) the value of t for which the acceleration of the particle is twice its initial acceleration.

A particle P moves along the x-axis in the positive direction. The velocity of P at time $t ext{ s is } 0.03 t^2 ext{ m s}^{-1}$. When t = 5 the displacement of P from the origin O is 2.5 m.

(i) Find an expression, in terms of t, for the displacement of P from O.

[4]

(ii) Find the velocity of P when its displacement from O is 11.25 m.

6

K-C

A particle P starts from rest at the point A and travels in a straight line, coming to rest again after 10 s. The velocity-time graph for P consists of two straight line segments (see diagram). A particle Q starts from rest at A at the same instant as P and travels along the same straight line as P. The velocity of Q is given by $v = 3t - 0.3t^2$ for $0 \le t \le 10$. The displacements from A of P and Q are the same when t = 10.

- (i) Show that the greatest velocity of P during its motion is $10 \,\mathrm{m \, s^{-1}}$.
- (ii) Find the value of t, in the interval 0 < t < 5, for which the acceleration of Q is the same as the acceleration of P.

A particle *P* travels in a straight line. It passes through the point *O* of the line with velocity 5 m s^{-1} at time t = 0, where *t* is in seconds. *P*'s velocity after leaving *O* is given by

$$(0.002t^3 - 0.12t^2 + 1.8t + 5) \text{ m s}^{-1}$$
.

The velocity of P is increasing when $0 < t < T_1$ and when $t > T_2$, and the velocity of P is decreasing when $T_1 < t < T_2$.

(i) Find the values of T_1 and T_2 and the distance OP when $t = T_2$.

[7]

(ii) Find the velocity of P when $t = T_2$ and sketch the velocity-time graph for the motion of P. [3]

A particle P starts from rest at O and travels in a straight line. Its velocity $v \text{m s}^{-1}$ at time t s is given by $v = 8t - 2t^2$ for $0 \le t \le 3$, and $v = \frac{54}{t^2}$ for t > 3. Find

- (i) the distance travelled by P in the first 3 seconds, [4]
- (ii) an expression in terms of t for the displacement of P from O, valid for t > 3, [3]
- (iii) the value of v when the displacement of P from O is 27 m. [3]

A particle P moves on a straight line. It starts at a point O on the line and returns to O 100 s later. The velocity of P is v m s⁻¹ at time I s after leaving O, where

 $v = 0.0001 r^3 - 0.015 r^2 + 0.5 r.$

(i) Show that P is instantaneously at rest when $\tau = 0$, $\tau = 50$ and $\tau = 100$.

[2]

- (ii) Find the values of v at the times for which the acceleration of P is zero, and sketch the velocity-time graph for P's motion for $0 \le t \le 100$.
- (iii) Find the greatest distance of P from O for $0 \le \tau \le 100$.

[4]

544-5

- (i) Show that the initial speed of the particle is zero. [4]
- (ii) Find the maximum speed of the particle. [2]
- (iii) Find the distance AB. [4]

A particle P moves in a straight line. At time ts, the displacement of P from O is s m and the acceleration of P is $a \text{ m s}^{-2}$, where a = 6t - 2. When t = 1, s = 7 and when t = 3, s = 29.

(i) Find the set of values of t for which the particle is decelerating.

[2]

(ii) Find s in terms of t.

[5]

(iii) Find the time when the velocity of the particle is $10 \,\mathrm{m \, s^{-1}}$.

24-43

12

Alan starts walking from a point O, at a constant speed of $4 \,\mathrm{m\,s^{-1}}$, along a horizontal path. Ben walks along the same path, also starting from O. Ben starts from rest 5 s after Alan and accelerates at $1.2 \,\mathrm{m\,s^{-2}}$ for 5 s. Ben then continues to walk at a constant speed until he is at the same point, P, as Alan.

- (i) Find how far Ben has travelled when he has been walking for 5 s and find his speed at this instant.
- (ii) Find the distance OP.

(i) Show that $t^{\frac{5}{3}} = \frac{5}{6}$ when the velocity of P is 3 m s^{-1} . [4]

(ii) Find the distance of P from O when the velocity of P is $3 \,\mathrm{m \, s^{-1}}$. [3]

14	A p	ticle P moves in a straight line starting from a point O. At time t s after leaving O, the velocity, of P is given by $v = (2t - 5)^3$.	
	(i)	Find the values of t when the acceleration of P is $54 \mathrm{m s^{-2}}$.	
M			
2 43			
41-12			
34			
	(ii)	Find an expression for the displacement of P from O at time t s. [3]	

A particle P moves in a straight line. It starts from rest at A and comes to rest instantaneously at B. The velocity of P at time t seconds after leaving A is $v \, \text{m s}^{-1}$, where $v = 6t^2 - kt^3$ and k is a constant.

- Eh-11-12
- (i) Find an expression for the displacement of P from A in terms of t and k. [2]
- (ii) Find an expression for t in terms of k when P is at B.

Given that the distance AB is 108 m, find

- (iii) the value of k, [2]
- (iv) the maximum value of v when the particle is moving from A towards B. [3]

	i)	Show that, when $t = 0.5$, the acceleration of P is 4 m s^{-2} .
		······································
Find the values of t when P is at instantaneous rest.		
Find the values of t when P is at instantaneous rest.		
Find the values of t when P is at instantaneous rest.		
) Find the values of t when P is at instantaneous rest.		······································
)	Find the values of t when P is at instantaneous rest.

(iii)	The particle is at O when $t = 3$. Find the distance of P from O when $t = 0$. [4]

A racing car is moving in a straight line. The acceleration $a \,\mathrm{m\,s^{-2}}$ at time $t \,\mathrm{s}$ after the car starts from rest is given by

$$a = 15t - 3t^{2} \qquad \text{for } 0 \le t \le 5,$$

$$a = -\frac{625}{t^{2}} \qquad \text{for } 5 < t \le k,$$

10-51-C

where k is a constant.

- (i) Find the maximum acceleration of the car in the first five seconds of its motion. [3]
- (ii) Find the distance of the car from its starting point when t = 5.
- (iii) The car comes to rest when t = k. Find the value of k. [5]

- A walker travels along a straight road passing through the points A and B on the road with speeds $0.9 \,\mathrm{m \, s^{-1}}$ and $1.3 \,\mathrm{m \, s^{-1}}$ respectively. The walker's acceleration between A and B is constant and equal to $0.004 \,\mathrm{m \, s^{-2}}$.
 - (i) Find the time taken by the walker to travel from A to B, and find the distance AB. [3]

54-11-42

A cyclist leaves A at the same instant as the walker. She starts from rest and travels along the straight road, passing through B at the same instant as the walker. At time t s after leaving A the cyclist's speed is kt^3 m s⁻¹, where k is a constant.

- (ii) Show that when t = 64.05 the speed of the walker and the speed of the cyclist are the same, correct to 3 significant figures.
- (ii) Find the cyclist's acceleration at the instant she passes through B.

[2]

A vehicle starts from rest at a point O and moves in a straight line. Its speed $\mathbf{v} \, \mathbf{m} \, \mathbf{s}^{-1}$ at time \mathbf{r} seconds after leaving O is defined as follows.

For
$$0 \le \mathbf{r} \le 60$$
, $\mathbf{v} = \mathbf{\kappa}_1 \mathbf{r} - 0.005 \mathbf{r}^2$,
for $\mathbf{r} \ge 60$, $\mathbf{v} = \frac{\mathbf{\kappa}_2}{\sqrt{\mathbf{r}}}$.

The distance travelled by the vehicle during the first $60 \, \text{s}$ is $540 \, \text{m}$.

- (1) Find the value of the constant κ_1 and show that $\kappa_2 = 12\sqrt{(60)}$. [5]
- (II) Find an expression in terms of τ for the total distance travelled when $\tau \ge 60$. [2]
- (III) Find the speed of the vehicle when it has travelled a total distance of 1260 m. [3]

A particle P moves in a straight line, starting from a point O. At time t s after leaving O, the velocity of P, $v \text{ m s}^{-1}$, is given by $v = 4t^2 - 8t + 3$.

1,1843

(i) Find the two values of t at which P is at instantaneous rest.

[2]

(ii) Find the distance travelled by P between these two times.

A particle moves in a straight line. Its velocity t seconds after leaving a fixed point O on the line is $v \,\mathrm{m} \,\mathrm{s}^{-1}$, where $v = 0.2t + 0.006t^2$. For the instant when the acceleration of the particle is 2.5 times its initial acceleration,

(i) show that t = 25,

[3]

(ii) find the displacement of the particle from O.

- 2.2 A particle moves in a straight line. Its displacement t s after leaving a fixed point O on the line is s m, where $s = 2t^2 \frac{80}{3}t^{\frac{3}{2}}$.
 - (i) Find the time at which the acceleration of the particle is zero.

[4]

(ii) Find the displacement and velocity of the particle at this instant.

[2]

23	A particle A moves in a straight line with constant speed $10 \mathrm{ms^{-1}}$. Two seconds after A passes a point O on the line, a particle B passes through O, moving along the line in the same direction as A. Particle B has speed $16 \mathrm{ms^{-1}}$ at O and has a constant deceleration of $2 \mathrm{ms^{-2}}$.		
	(i) Find expressions, in terms of t, for the displacement from O of each particle ts after B passes through O.[3]		
ما			
3 42			
4			
37			
	(ii) Find the distance between the particles when B comes to instantaneous rest. [3]		

23

(iii)	Find the minimum distance between the particles.	[3]
		•••••
		•••••
		•••••••••••••••••••••••••••••••••••••••
		•••••
		•••••
	······································	

24

An aeroplane moves along a straight horizontal runway before taking off. It starts from rest at $\bf O$ and has speed $90\,{\rm m\,s^{-1}}$ at the instant it takes off. While the aeroplane is on the runway at time $\bf r$ seconds after leaving $\bf O$, its acceleration is $(1.5+0.012{\rm r})\,{\rm m\,s^{-2}}$. Find

(1) the value of τ at the instant the aeroplane takes off,

[4]

(II) the distance travelled by the aeroplane on the runway.

A particle P moves in a straight line. P starts from rest at O and travels to A where it comes to rest, taking 50 seconds. The speed of P at time r seconds after leaving O is v m s⁻¹, where v is defined as follows.

7-13-42

For
$$0 \le \tau \le 5$$
, $v = \tau - 0.1\tau^2$,
for $5 \le \tau \le 45$, v is constant,
for $45 \le \tau \le 50$, $v = 9\tau - 0.1\tau^2 - 200$.

(i) Find the distance travelled by P in the first 5 seconds.

[3]

(ii) Find the total distance from O to A, and deduce the average speed of P for the whole journey from O to A.

A particle P moves in a straight line, starting from a point O. The velocity of P, measured in $m s^{-1}$, at time t s after leaving O is given by

$$v = 0.6t - 0.03t^2$$
.

- (i) Verify that, when t = 5, the particle is 6.25 m from O. Find the acceleration of the particle at this time. [4]
- (ii) Find the values of t at which the particle is travelling at half of its maximum velocity. [6]

71241

A particle P starts from rest at a point O and moves in a straight line. P has acceleration 0.6τ m s⁻² at time τ seconds after leaving O, until $\tau = 10$.

(i) Find the velocity and displacement from O of P when $\tau = 10$.

[5]

After $\tau = 10$, P has acceleration -0.4τ m s⁻² until it comes to rest at a point A.

(ii) Find the distance OA.

[7]

A particle P starts to move from a point O and travels in a straight line. The velocity of P is $k(60t^2 - t^3) \,\mathrm{m \, s^{-1}}$ at time t s after leaving O, where k is a constant. The maximum velocity of P is is $6.4 \,\mathrm{m' \, s^{-1}}$.

7-12-42

(i) Show that $k = 0.0002$.	
	[3]

P comes to instantaneous rest at a point A on the line. Find

- (ii) the distance OA, [5]
- (iii) the magnitude of the acceleration of P at A, [2]
- (iv) the speed of P when it subsequently passes through O. [2]

29

Two cyclists P and Q travel along a straight road ABC, starting simultaneously at A and arriving simultaneously at C. Both cyclists pass through B 400 s after leaving A. Cyclist P starts with speed $3 \,\mathrm{m \, s^{-1}}$ and increases this speed with constant acceleration $0.005 \,\mathrm{m \, s^{-2}}$ until he reaches B.

(i) Show that the distance AB is 1600 m and find P's speed at B.

[3]

Cyclist Q travels from A to B with speed $v \, \text{m s}^{-1}$ at time t seconds after leaving A, where

 $v = 0.04t - 0.0001t^2 + k$

7-11-60

and k is a constant.

(ii) Find the value of k and the maximum speed of Q before he has reached B.

[6]

Cyclist P travels from B to C, a distance of 1400 m, at the speed he had reached at B. Cyclist Q travels from B to C with constant acceleration a m s⁻².

(iii) Find the time taken for the cyclists to travel from B to C and find the value of a.

[4]

30 A particle P travels from a point O along a straight line and comes to instantaneous rest at a point A. The velocity of P at time t s after leaving O is $v \text{ m s}^{-1}$, where $v = 0.027(10t^2 - t^3)$. Find

(i) the distance OA,

[4]

(ii) the maximum velocity of P while moving from O to A.

31 A particle P moves in a straight line. It starts from a point O on the line with velocity $1.8 \,\mathrm{m\,s^{-1}}$. The acceleration of P at time t s after leaving O is $0.8t^{-0.75}\,\mathrm{m\,s^{-2}}$. Find the displacement of P from O when t=16.

32 A particle P moves along a straight line for $100 \,\mathrm{s}$. It starts at a point O and at time t seconds after leaving O the velocity of P is $v \,\mathrm{m} \,\mathrm{s}^{-1}$, where

2-15-42

- $v = 0.00004t^3 0.006t^2 + 0.288t.$
- (i) Find the values of t at which the acceleration of P is zero.

[3]

(ii) Find the displacement of P from O when t = 100.

A particle P starts at the point O and travels in a straight line. At time t seconds after leaving O the 3 3 velocity of P is $v \,\mathrm{m \, s^{-1}}$, where $v = 0.75t^2 - 0.0625t^3$. Find

(i) the positive value of t for which the acceleration is zero,

[3]

(ii) the distance travelled by P before it changes its direction of motion.

[5]

A particle P starts from rest and moves in a straight line for 18 seconds. For the first 8 seconds motion P has constant acceleration $0.25 \,\mathrm{m\,s^{-2}}$. Subsequently P's velocity, $v \,\mathrm{m\,s^{-1}}$ at time after the motion started, is given by

$$v = -0.1t^2 + 2.4t - k,$$

where $8 \le t \le 18$ and k is a constant.

- (i) Find the value of v when t = 8 and hence find the value of k. [2]
- (ii) Find the maximum velocity of P. [2]
- (iii) Find the displacement of P from its initial position when t = 18. [3]

Two particles P and Q are projected vertically upwards from horizontal ground at the same instant. The speeds of projection of P and Q are $12 \,\mathrm{m\,s^{-1}}$ and $7 \,\mathrm{m\,s^{-1}}$ respectively and the heights of P and Q above the ground, t seconds after projection, are h_P m and h_Q m respectively. Each particle comes to rest on returning to the ground.

3-11-42

- (i) Find the set of values of t for which the particles are travelling in opposite directions. [3]
- (ii) At a certain instant, P and Q are above the ground and $3h_P = 8h_Q$. Find the velocities of P and Q at this instant.

(i) Find the time taken for the particle to travel from P to Q.

[5]

(ii) Find the set of values of t for which the acceleration of the particle is positive.

[4]

- A car driver makes a journey in a straight line from A to B, starting from rest. The speed of the car increases to a maximum, then decreases until the car is at rest at B. The distance travelled by the car I seconds after leaving A is 0.000 011 7(400r³ 3r⁴) metres.
 - (i) Find the distance AB.

[3]

(ii) Find the maximum speed of the car.

[4]

- (iii) Find the acceleration of the car
 - (a) as it starts from A.
 - (b) as it arrives at B.

[2]

(iv) Sketch the velocity-time graph for the journey.

[2]

38

The diagram shows the velocity-time graph for the motion of a particle P which moves on a straight line BAC. It starts at A and travels to B taking S s. It then reverses direction and travels from S to S taking S s. For the first S s of S s motion its acceleration is constant. For the remaining S the velocity of S is S at time S s after leaving S, where

$$v = -0.2t^2 + 4t - 15$$
 for $3 \le t \le 15$.

- (i) Find the value of v when t = 3 and the magnitude of the acceleration of P for the first 3 s of its motion.
- (ii) Find the maximum velocity of P while it is moving from B to C. [3]
- (iii) Find the average speed of P,
 - (a) while moving from A to B,
 - **(b)** for the whole journey.

[6]

14-15-4

Two particles A and B start to move at the same instant from a point O. The particles move in the same direction along the same straight line. The acceleration of A at time ts after starting to move is $a \, \text{m/s}^{-2}$, where a = 0.05 - 0.0002t.

(i) Find A's velocity when t = 200 and when t = 500.

[4]

B moves with constant acceleration for the first 200 s and has the same velocity as A when t = 200. B moves with constant retardation from t = 200 to t = 500 and has the same velocity as A when t = 500.

(II) Find the distance between A and B when t = 500.

[6]

$$x = 0.08t^2 - 0.0002t^3.$$

- (i) Find the value of t when P returns to O and find the speed of P as it passes through O on its return. [4]
- (ii) For the motion of P until the instant it returns to O, find
 - (a) the total distance travelled,

[3]

(b) the average speed.

[2]

- A particle *P* moves on a straight line, starting from rest at a point *O* of the line. The time after *P* starts to move is *t* s, and the particle moves along the line with constant acceleration $\frac{1}{4}$ m s⁻² until it passes through a point *A* at time t = 8. After passing through *A* the velocity of *P* is $\frac{1}{2}t^{\frac{2}{3}}$ m s⁻¹.
- 4-42-14
- (i) Find the acceleration of P immediately after it passes through A. Hence show that the acceleration of P decreases by $\frac{1}{12}$ m s⁻² as it passes through A. [4]
- (ii) Find the distance moved by P from t = 0 to t = 27.

A particle P starts from a fixed point O and moves in a straight line. At time t s after leaving O, the velocity v m s⁻¹ of P is given by $v = 6t - 0.3t^2$. The particle comes to instantaneous rest at point X.

(i) Find the distance OX.

[4]

A second particle Q starts from rest from O, at the same instant as P, and also travels in a straight line. The acceleration a m s⁻² of Q is given by a = k - 12t, where k is a constant. The displacement of Q from O is 400 m when t = 10.

(ii) Find the value of k.

[4]

A particle P moves in a straight line. It starts at a point O on the line and at time t s after leaving O it has a velocity $v \text{ m s}^{-1}$, where $v = 6t^2 - 30t + 24$.

- (i) Find the set of values of t for which the acceleration of the particle is negative. [2]
- (ii) Find the distance between the two positions at which P is at instantaneous rest. [4]
- (iii) Find the two positive values of t at which P passes through O. [3]