www.mrc-papers.com

CLASSIF Mobility 15528711 / 5528711

International Examinations Papers

Mob: +974 55249797 / 55258711 E-mail:rashed.saba@gmail.com

Waves: 13

TOPIC-Describing waves, Types, speed, Intensity and wave power,oscilloscope, Doppler effect, EMW and EMR

Copyright©MRC®: (9702/02 -P2) - 2010-2017

+97455258711

rashed.saba@gmail.com

b) 7							REARRANGED &	2
•	the seven re A to G in Fig	egions of the j. 5.1.	electromagn	ietic sį	oectrum are	represented	by blocks labe	led
			visi	ble rec	gion		mrc	HURY. D
					,		RASHED CHO	2/
Г	_			<u> </u>			Mob: +974 55258711 / 552 E-mail:rashed.saba@gmail	49797 I.com
	Α	В	С	D	E	F	G	
V	vavelength o	decreasing						
			F	ig. 5.	1			
F	typical wav	velength for t	ne visible reg	ion D	is 500 nm.			
(i) Name th	ne principal ra	adiations and	l give a	a typical wav	elength for e	each of the regi	ons
	B, E and							
): 	1 (50)		-118)			
				Cases.				
	F: name	::	-CIA	::::::::::::::::::::::::::::::::::::::	vavelength: .			. m [3]
(i	i) Calculat	e the frequer	International icy correspor	nding t	ations ^p apers o a wavelen	gth of 500 nr	n.	
			8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	gmail.com			
				fregi	iencv =		Hz	[2]
c) A	II the waves	s in the spect	rum shown i				plain the mean	
	f the term p		ram snown n	ii i ig.	o. i can be p	olarisca. Ex	plain the mean	iiig

9702/23/O/N/12

© UCLES 2012

[Turn over

The way	e spectrum of electromagnoves, visible light and gamma	etic waves is divided into a near radiation.	umber of regions such as radic
(a)	State three distinct feat electromagnetic spectrum	tures of waves that are co	ommon to all regions of the
	1		ASSIFIER TO A STATE OF THE STAT
	2		
	3		Mob: +974 55258711 / 55249797
(b)	A typical wavelength of visthis light in a wave of length	sible light is 495 nm. Calculate th 1.00 m.	E-mail:rashed.saba@gmail.com e the number of wavelengths of
		RESPANSED TO	
(=)	Chata a femical consultant (le		r =[2]
(c)	State a typical wavelength	Tor	
	(i) X-rays,	CLASSIFIED	Monte Carlos Associates
		International Framus wavelengtl	n = m
	(ii) infra-red radiation.		
		wavelengtl	n = m [2]

2

For Examiner's Use

03	(a)	(i)	Define, for a wave,	
				For
		•		Examiner
			 wavelength λ, 	Use
			2. frequency f.	
			[1]	

(ii) Use your definitions to deduce the relationship between λ , f and the speed v of the

[1]

(b) Plane waves on the surface of water are represented by Fig. 5.1 at one particular instant of time.

For Examiner's Use

Fig. 5.1 (not to scale)

The waves have frequency 2.5 Hz.

Determine, for the waves,

(i) the amplitude,

mm [1]

(ii) the speed,

(iii) the phase difference between points A and B.

(c)	The wave in (b) was produced in a ripple tank. Describe briefly, with the aid of a sketch diagram, how the wave may be observed.								
		DEARRANGED		Use					
		C. S. S.							
		i mrc							
		RASHED CHOND	# # # # # # # # # # # # # # # # # # #						
		Mob: +974 55258711 / 55249797 E-mail:rashed.saba@gmail.com							

[2]

A long rope is held under tension between two points A and B. Point A is made to vibrate 04 For vertically and a wave is sent down the rope towards B as shown in Fig. 5.1. Examiner's Use direction of travel of wave Fig. 5.1 (not to scale) The time for one oscillation of point A on the rope is 0.20 s. The point A moves a distance of 80 mm during one oscillation. The wave on the rope has a wavelength of 1.5 m. (a) (i) Explain the term displacement for the wave on the rope. (ii) Calculate, for the wave on the rope, 1. the amplitude, amplitude = mm [1] 2. the speed. **International Examinations Papers** Mob: +974 55249797 / 55258711 speed = m s⁻¹ [3] (b) On Fig. 5.1, draw the wave pattern on the rope at a time 0.050s later than that shown. (c) State and explain whether the waves on the rope are (i) progressive or stationary, (ii) longitudinal or transverse.

(a)	State what is meant by a <i>progressive wave</i> .	For Examiner's Use
(b)	The variation with distance <i>x</i> along a progressive wave of a quantity <i>y</i> , at a particular time, is shown in Fig. 5.1. Mob: +974 55258711/55249797 E-mail:rashed.saba@gmail.com	
	Fig. 5.1	
	(i) State what the quantity <i>y</i> could represent.	
	[1]	
	(ii) Distinguish between the quantity <i>y</i> for	
	1. a transverse wave,	
	[1]	
	2. a longitudinal wave.	
	[1]	

5

0 5 Fig. 2.1 shows the variation with distance *x* along a wave of its displacement *d* at a particular time.

Fig. 2.1

The wave is a progressive wave having a speed of 330 m s⁻¹.

(a) (i) Use Fig. 2.1 to determine the wavelength of the wave.

wavelength = m

(ii) Hence calculate the frequency of the wave.

frequency = Hz

(b) A second wave has the same frequency and speed as the wave shown in Fig. 2.1 but has double the intensity. The phase difference between the two waves is 180°.

On the axes of Fig. 2.1, sketch a graph to show the variation with distance x of the displacement d of this second wave. [2]

The variation with time t of the displacement x of a point in a transverse wave T_1 is shown in Fig. 5.1.

Fig. 5.1

(a)	By me	refe ant l	rence to displacement and direction of travel of wave energy, explain what is by a transverse wave.
		•••••	
			E MIC 19
(b)	lags	ecor s be ne p	and transverse wave T_2 , of amplitude A has the same waveform as wave T_1 but hind T_1 by a phase angle of 60°. The two waves T_1 and T_2 pass through the point.
	(i)	On wa	Fig. 5.1, draw the variation with time t of the displacement x of the point in [2]
	(ii)	Exp	plain what is meant by the <i>principle of superposition</i> of two waves.
		•••••	
			[2]
((iii)	For	the time $t = 1.0$ s, use Fig. 5.1 to determine, in terms of A ,
		1.	the displacement due to wave T ₁ alone,
			displacement =
		2.	the displacement due to wave T ₂ alone,
			displacement =
		3.	the resultant displacement due to both waves.
			displacement =

For Examiner's Use

Fig. 6.1

The frequency of the wave is 15 Hz. For this wave, use Fig. 6.1 to determine

(i) the amplitude,

CLASSIFIED amplitude =

... mm [1]

(ii) the phase difference between the points P and Q on the string,

phase difference = [1]

(iii) the speed of the wave.

(b) The period of vibration of the wave is *T*. The wave moves forward from the position shown in Fig 6.1 for a time 0.25 *T*. On Fig. 6.1, sketch the new position of the wave. [2]

(c) Another stretched string is used to form a stationary wave. Part of this wave, at a particular instant, is shown in Fig. 6.2.

For Examiner's Use

Fig. 6.2

The points on the string are at their maximum displacement.

(i) State the phase difference between the particles labelled X and Y.

(ii) Explain the following terms used to describe stationary waves on a string:

antinode:	(\$\sqrt{2}\text{88N}\text{70}\text{88N}\text{70}\text{70}\text{88N}\text{70}70	
node:		
	RASHED RASHED	[1]

(iii) State the number of antinodes shown on Fig. 6.2 for this wave.

(iv) The period of vibration of this wave is τ . On Fig. 6.2, sketch the stationary wave 0.25 τ after the instant shown in Fig. 6.2.

09	(a)	(i)	Explain what is meant by a <i>progressive transverse</i> wave.
			progressive:
			REARRANGED &
			transverse:
			That Rashed Colo [2
		(ii)	Define frequency. Mob: +974 55258711 / 55249797 E-mail:rashed.saba@gmail.com
			[1
	(b)	The	variation with distance x of displacement y for a transverse wave is shown in Fig. 7.1.
		<i>y</i> /	cm 1.0 0 0 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1
		On	Fig. 7.1, five points are labelled +974 55249797 / 55258711
		Use	Fig. 7.1 to state any two points having a phase difference of
		(i)	zero,
			[1
		(ii)	270°.
			[1]

(c) The frequency of the wave in (b) is $15\,\mathrm{Hz}$.

Calculate the speed of the wave in (b).

speed = ms^{-1} [3]

(d) Two waves of the same frequency have amplitudes 1.4cm and 2.1cm.

Calculate the ratio

intensity of wave of amplitude 1.4 cm intensity of wave of amplitude 2.1 cm .

ratio =[2	[2	2		_	-
-----------	----	---	--	---	---

A student is studying a water wave in which all the wavefronts are parallel to one another. The variation with time *t* of the displacement *x* of a particular particle in the wave is shown in Fig. 5.1.

Fig. 5.1

The distance d of the oscillating particles from the source of the waves is measured. At a particular time, the variation of the displacement x with this distance d is shown in Fig. 5.2.

Fig. 5.2

- (a) Define, for a wave, what is meant by
 - (i) displacement,

	 	 	 •	•••••	• • •

[[1]
---	-----

(ii) wavelength.

.....[1]

(b)	Use	e Figs. 5.1 and 5.2 to determine, for the water wave,	For
	(i)	the period T of vibration,	Examiner's Use
	(ii)	the wavelength λ , $\lambda = \frac{1}{2} \frac{1}$	
	(iii)	the speed v.	
(c)		Use Figs. 5.1 and 5.2 to state and explain whether the wave is losing power as it moves away from the source. International Examinations Papers Mob. +974 55249797 1 55259711 E-mail:rashed.sabar/ground.com [2] Determine the ratio intensity of wave at source intensity of wave 6.0 cm from source	
		ratio =[3]	

1 (a) Fig. 4.1 shows the variation with time t of the displacement x of one point in a progressive wave.

Fig. 4.1

Fig. 4.2 shows the variation with distance d along the same wave of the displacement x.

Fig. 4.2

- (i) Use Figs. 4.1 and 4.2 to determine, for this wave,
 - 1. the amplitude,

amplitude = mm

2. the wavelength,

wavelength = m

3. the frequency,

frequency =	REARRANGED & C. ESSAPED AND RASHED ON HZ
	Mob: +974 55258711 / 55249797 E-mail:rashed.saba@gmail.com

4. the speed.

m s ⁻¹	speed =
[6]	A SACTOR OF THE

(ii) On Fig. 4.2, draw a second wave having the same amplitude but half the frequency as that shown.

International Examinations Papers

Mob: +974 55249797 / 55258711
E-mail:rashed.saba@gmail.com

12 Fig. 5.1 shows the variation with time t of the displacements x_A and x_B at a point P of two sound waves A and B.

For Examiner's Use

Fig. 5.1

(a)	waves.
	similarity:
	difference:[2]
(b)	State, with a reason, whether the two waves are coherent.
	[1]

(c) The intensity of wave A alone at point P is I.

(i)	Show that the intensity of wave B alone at	point P	is $\frac{4}{9}$	Ι.
-----	--	---------	------------------	----

For Examiner's Use

[2]

(ii) Calculate the resultant intensity, in terms of I, of the two waves at point P.

resultant intensity = I [2]

- (d) Determine the resultant displacement for the two waves at point P
 - (i) at time $t = 3.0 \, \text{ms}$,

CLASSIFIED

resultant displacement des cm [1]

Mob: +974 55249797 / 55258711

E-mailtrashed.saba@gmail.com

(ii) at time $t = 4.0 \,\text{ms}$.

resultant displacement = cm [2]

(i) Calculate the frequency of the sound wave.

For Examiner's Use

frequency =

(ii) The microphone is now moved towards S along the line LS. When the microphone is moved 6.7 cm, the trace seen on the c.r.o. varies from a maximum amplitude to a minimum and then back to a maximum.

1. Use the properties of stationary waves to explain these changes in amplitude.
[1]

2. Calculate the speed of sound.

Please turn over for Question 7.

14 A loudspeaker produces a sound wave of constant frequency.

For Examiner's Use

Outline how a cathode-ray oscilloscope (c.r.o.) may be used to determine this frequency.

15 (a) A source of sound has frequency f. Sound of wavelength λ is produced by the source. (i) State what is meant by the frequency of the source, 1. the distance moved, in terms of λ , by a wavefront during η oscillations of the source. distance =[1] (ii) Use your answers in (i) to deduce an expression for the speed ν of the wave in terms of f and λ . [2] (b) The waveform of a sound wave produced on the screen of a cathode-ray oscilloscope (c.r.o.) is shown in Fig. 5.1 Mob: +974 55249797 / 55258711 E-mail:rashed.saba@gmail.com

For Examiner's

Use

Fig. 5.1

1 cm

1 cm

© UCLES 2010

The time-base setting of the c.r.o. is $2.0 \ ms \ cm^{-1}$.

(i) Determine the frequency of the sound wave.

For Examiner's Use

frequency =Hz [2]

(ii) A second sound wave has the same frequency as that calculated in (i). The amplitude of the two waves is the same but the phase difference between them is 90°.

On Fig. 5.1, draw the waveform of this second wave.

[1]

(c) The sound wave emitted from the horn of a stationary car is detected with a microphone and displayed on a cathode-ray oscilloscope (c.r.o.), as shown in Fig. 5.1.

Fig. 5.1

The y-axis setting is $5.0 \,\mathrm{mV}\,\mathrm{cm}^{-1}$. The time-base setting is 0.50 ms cm⁻¹.

(i) Use Fig. 5.1 to determine the frequency of the sound wave.

(ii) The horn of the car sounds continuously. Describe the changes to the trace seen on the c.r.o. as the car travels at constant speed

1.	directly towards the stationary microphone,	
2.	directly away from the stationary microphone.	

		[3]

[Total: 7]

17	(a)	Describe the Doppler effect.	
			REARRANGED
			FI III
			EV MIC (1) E
	(b)	A car travels with a constant velocity along a straight road. The c	ar horn with a frequency of
		400 Hz is sounded continuously. A stationary observer on the road	dside hears the sound from
		the horn at a frequency of 360 Hz.	MASHED
		The speed of sound is $340 \mathrm{m}\mathrm{s}^{-1}$.	Mob: +974 55258711 / 55249797 F-mail:rashed.saba@gmail.com

Determine the magnitude v, and the direction, of the velocity of the car relative to the observer.

	E CAN'E CO
ms ⁻¹	v =
[0]	ASS direction
[3]	
[Total: 4]	

18 (a)	Sta	ate what is meant by the <i>Doppler effect</i> .	
(b)	 A c spe	child sits on a rotating horizontal platform in a playground. The child moves with a constant ped along a circular path, as illustrated in Fig. 4.1. Circular path Circular path Circular path Child moves with a constant observer to a distant observer	
		Fig. 4.1	
An observer is standing a long distance away from the child. During one particular revolution the child, moving at a speed of 7.5 m s ⁻¹ , starts blowing a whistle at point P and stops blowing it at point Q on the circular path.			
The whistle emits sound of frequency 950 Hz. The speed of sound in air is 330 m s ⁻¹ (i) Determine the maximum frequency of the sound heard by the distant observer.			
		maximum frequency =Hz [2]	
((ii)	Describe the variation in the frequency of the sound heard by the distant observer.	

[Total: 6]

19 The signal from a microwave detector is recorded on a cathode-ray oscilloscope (c.r.o.), as shown in Fig. 2.1.

Fig. 2.1

The time-base setting on the c.r.o. is $50 \,\mathrm{ps}\,\mathrm{cm}^{-1}$.

(a) Using Fig. 2.1, determine the wavelength of the microwaves.

wavelength =	l	m	[4]	
--------------	---	---	-----	--

(b) The signal from a radio wave detector is recorded on the same c.r.o. The wavelength of the radio waves is 1.5×10^3 m.

Determine the time-base setting required to display the same number of oscillations on the c.r.o. as shown in Fig. 2.1.

time-base setting =unit......[2]

A microphone detects a musical note of frequency f. The microphone is connected to a cathoderay oscilloscope (c.r.o.). The signal from the microphone is observed on the c.r.o. as illustrated in Fig. 2.1.

Fig. 2.1

The time-base setting of the c.r.o. is 0.50 ms cm. The Y-plate setting is 2.5 mV cm⁻¹.

(a) Use Fig. 2.1 to determine

(i) the amplitude of the signal,

E-mail:resher@mplitude:= mV [2]

the frequency f,

f = Hz [3]

the actual uncertainty in f caused by reading the scale on the c.r.o.

actual uncertainty = Hz [2]

(b) State *f* with its actual uncertainty.

f = Hz [1]

2 1 (a) Explain how stationary waves are formed.

Fig. 8.1

The loudspeaker emits sound of one frequency. The microphone is connected to a cathode-ray oscilloscope (c.r.o.).

The waveform obtained on the c.r.o for one position of the microphone is shown in Fig. 8.2.

Fig. 8.2

(i) Use Fig. 8.2 to show that the frequency of the sound is approximately 1300 Hz.

The time-base setting of the c.r.o. is $0.20\,\mathrm{ms\,cm^{-1}}$.

			Mob: +974 55258711 / 55249797 E-mail:rashed.saba@gmail.com
(ii)	Explain how the appa	ratus is used to determine the way	elength of the sound.
			[2]
(iii)	The wavelength of the experiment.	ne sound wave is 0.26 m. Calcula	ate the speed of sound in this
	,	CLASSIFIED	
		International Examinations Papers Mob: +974 55249797 / 55258711	
		E-mail:rashed.saba@gmail.com speed =	m s ⁻¹ [2]

A source of radio waves sends a pulse towards a reflector. The pulse returns from the reflector and is detected at the same point as the source. The emitted and reflected pulses are recorded on a cathode-ray oscilloscope (c.r.o.) as shown in Fig. 2.1.

For Examiner's

Mob: +974 55258711 / 55249797 E-mail:rashed.saba@gmail.com

Fig. 2.1

The time-base setting is $0.20 \,\mu s \,cm^{-1}$.

(a) Using Fig. 2.1, determine the distance between the source and the reflector.

distance =		m [4]
------------	--	-------

(b) Determine the time-base setting required to produce the same separation of pulses on the c.r.o. when sound waves are used instead of radio waves. The speed of sound is $300\,\mathrm{m\,s^{-1}}$.

23 (a) Explain what is meant by the following quantities for a wave on the surface of water:

(i)	displacement and amplitude,	
	displacement	REARRANGED
	amplitude	ESSE ESSE
(ii)	frequency and time period. frequency	Mob: +974 55289711 / 55249797
	time period	
		[2]

(b) Fig. 5.1 represents waves on the surface of water in a ripple tank at one particular instant of time.

Fig. 5.1 (not to scale)

A vibrator moves the surface of the water to produce the waves of frequency f. The speed of the waves is $7.5\,\mathrm{cm\,s^{-1}}$. Where the waves travel on the water surface, the maximum depth of the water is $15\,\mathrm{mm}$ and the minimum depth is $12\,\mathrm{mm}$.

	(i)	Calculate, for the waves	,
		1. the amplitude,	
		2. the wavelength.	amplitude = [1] Mob: +974 55258711 / 55249797 E-mail:rashed.saba@gmail.com
	(ii)	Calculate the time period	wavelength = m [2] of the oscillations of the vibrator.
			time period = s [2]
(c)	Stat	te and explain whether the	waves on the surface of the water shown in Fig. 5.1 are
	(i)	progressive or stationary	nternational Examinations Papers
			Mob: +974 55249797 / 55258711 E-mail:rashed.saba@gmail.com
	(ii)	transverse or longitudinal	
			[1]

10 **2 4** (a) State what is meant by the *frequency* of a progressive wave. ..[2] (b) A cathode-ray oscilloscope (c.r.o.) is used to determine the frequency of the sound emitted by a loudspeaker. The trace produced on the screen of the c.r.o. is shown in Fig. 4.1. Mob: +974 55258711 / 55249797 E-mail:rashed.saba@gmail.com 1 cm Fig. 4.1 The time-base setting of the c.r.o. is 250 µs cm⁻¹. Show that the frequency of the sound wave is 1600 Hz. [2] (c) The loudspeaker in (b) emits the sound in all directions. A person attaches the loudspeaker to a string and then swings the loudspeaker at a constant speed in a horizontal circle above his head. An observer, standing a large distance away from the loudspeaker, hears sound of maximum

frequency 1640 Hz. The speed of sound in air is 330 m s⁻¹.

(i) Determine the speed of the loudspeaker.

speed = ms⁻¹ [2]

(ii)	Describe and explain, qualitatively, the variation in the frequenthe observer.	ncy of the sound heard by
		REARRANGED &
		HE HESSA
		RASHED CHOST
	*	Mob: +974 552587111 55249797 E-mail:rashed.saba@gmail.com
		[2]

[Total: 8]