www.mrc-papers.com

CLASSIFIED

International Examinations Papers

Mob: +974 55249797 / 55258711 E-mail:rashed.saba@gmail.com

Practical skills: 1

TOPIC- precision, accuracy, errors, uncertainty, force meters, calipers, screw gauge, pendulum, lever arm etc.

1	(a)	Sta follo	te the most appropriate instrument, or instruments, for the measurement of thowing.	he
		(i)	the diameter of a wire of diameter about 1 mm	
			[1]
		(ii)	the resistance of a filament lamp	
			[1	1]
	(iii)	the peak value of an alternating voltage	
			[1	1]
	(b)	The mea	mass of a cube of aluminium is found to be 580g with an uncertainty in the surement of 10g. Each side of the cube has a length of (6.0 ± 0.1) cm.	е
		Calc appr	culate the density of aluminium with its uncertainty. Express your answer to are copriate number of significant figures.	n
			CLASSIFIED International Examinations Papers Mob: +974 \$5249797 / 55259711 E-modificational Suba@goodli.com:	
			density = ± gcm ⁻³ [5]	

2 A coin is made in the shape of a thin cylinder, as shown in Fig. 2.1.

Fig. 2.1

Fig. 2.2 shows the measurements made in order to determine the density ρ of the material used to make the coin.

quantity	measurement	uncertainty
mass	9.6 g	± 0.5 g
thickness	2.00 mm	± 0.01 mm
diameter	22.1 mm	± 0.1 mm

(a) Calculate the density ρ in kg m⁻³.

International Examinations Papers

Mob: +974 \$5249797 / \$5258711
E-mail:reshed.saba@gmzil.com

kg m⁻³ [3]

(b) (i) Calculate the percentage uncertainty in ρ .

 2 (a) Define pressure.

.....[1]

(b) A cylinder is placed on a horizontal surface, as shown in Fig. 2.1.

Fig. 2.1

The following measurements were made on the cylinder:

mass = $5.09 \pm 0.01 \text{ kg}$ diameter = $9.4 \pm 0.1 \text{ cm}$.

(i) Calculate the pressure produced by the cylinder on the surface.

pressure = Pa [3]

(ii) Calculate the actual uncertainty in the pressure.

actual uncertainty =Pa [3]

(iii) State the pressure, with its actual uncertainty.

[2]

1 Measurements made for a sample of metal wire are shown in Fig. 1.1.

quantity	measurement	uncertainty
length	1750 mm	±3mm
diameter	0.38 mm	± 0.01 mm
resistance	7.5 Ω	±0.2Ω

Fig. 1.1

(a)	Sta	ate the appropriate inst	rig. i.i ruments used to make each of t	hese measurements.
	(i)	length		
	(ii)	diameter		[1]
				[4]
	(iii)	resistance	(Ang)	[1]
(b)	(i)	Show that the resistiv	ty of the metal is calculated to b	[1] De 4.86 × 10 ⁻⁷ Ωm.
			International Examinations Papers Mob: +074 55249797 / 55238711 E-mathrashed.saba@gmail.com	

(ii) Calculate the uncertainty in the resistivity.

uncertainty = ± Ωm [4] 9702/21/M/J/11

(c) Use the answers in (b) to express the resistivity with its uncertainty to the appropriate number of significant figures.

For Examiner's Use

resistivity = \pm Ω m [1]

1 The volume V of liquid flowing in time t through a pipe of radius r is given by the equation

For Examiner's Use

$$\frac{V}{t} = \frac{\pi P r^4}{8Cl}$$

where P is the pressure difference between the ends of the pipe of length l, and C depends on the frictional effects of the liquid.

An experiment is performed to determine C. The measurements made are shown in Fig. 1.1.

$\frac{V}{t}$ / 10 ⁻⁶ m ³ s ⁻¹	P/10 ³ Nm ⁻²	r/mm	1/m	
1.20 ± 0.01	2.50 ± 0.05	0.75 ± 0.01	0.250 ± 0.001	

Fig. 1.1

(a) Calculate the value of C.

..... Nsm⁻² [2]

(b) Calculate the uncertainty in C.

uncertainty =
$$Nsm^{-2}$$
 [3]

(c) State the value of C and its uncertainty to the appropriate number of significant figures.

1 The speed v of a transverse wave on a uniform string is given by the expression

$$v = \sqrt{\frac{Tl}{m}}$$

where T is the tension in the string, l is its length and m is its mass.

An experiment is performed to determine the speed v of the wave. The measurements are shown in Fig. 1.1.

quantity	measurement	uncertainty
T	1.8N	± 5%
ı	126cm	± 1%
m	5.1 g	± 2%

Fig. 1.1

(a)	State an appropriate instrument to measure the length <i>l</i> .	
		1]
(b)	(i) Use the data in Fig. 1.1 to calculate the speed v.	

$$v = \dots ms^{-1}$$
 [2]

(ii) Use your answer in (b)(i) and the data in Fig. 1.1 to determine the value of v, with its absolute uncertainty, to an appropriate number of significant figures.

$$v = \dots \pm \dots \pm ms^{-1}$$
 [3]

[Total: 6]

1 (a) Define <i>dens</i>	ity.
---------------------------------	------

(b) The mass *m* of a metal sphere is given by the expression

$$m = \frac{\pi d^3 \rho}{6}$$

where ρ is the density of the metal and \emph{d} is the diameter of the sphere.

Data for the density and the mass are given in Fig. 1.1.

quantity	value	uncertainty		
ρ	8100 kg m ⁻³	± 5%		
m	7.5 kg	± 4%		

(i) Calculate the diameter d.

.. m [1

(ii) Use your answer in (i) and the data in Fig. 1.1 to determine the value of *d*, with its absolute uncertainty, to an appropriate number of significant figures.

[Total: 5]

1 (a) Define den	ısity.
------------------	--------

(b) The mass m of a metal sphere is given by the expression

$$m = \frac{\pi d^3 \rho}{6}$$

where ρ is the density of the metal and \emph{d} is the diameter of the sphere.

Data for the density and the mass are given in Fig. 1.1.

quantity	value	uncertainty
ρ	8100 kg m ⁻³	± 5%
m	7.5 kg	± 4%

(i) Calculate the diameter d.

. m [1

(ii) Use your answer in (i) and the data in Fig. 1.1 to determine the value of *d*, with its absolute uncertainty, to an appropriate number of significant figures.

[Total: 5]

For Examiner's Use

1 A simple pendulum may be used to determine a value for the acceleration of free fall *g*. Measurements are made of the length *L* of the pendulum and the period *T* of oscillation.

The values obtained, with their uncertainties, are as shown.

$$T = (1.93 \pm 0.03) \text{ s}$$

 $L = (92 \pm 1) \text{ cm}$

- (a) Calculate the percentage uncertainty in the measurement of
 - (i) the period T,

uncertainty = % [1]

(ii) the length L.

uncertainty = % [1]

(b) The relationship between <i>T</i> , <i>L</i> and <i>g</i> is given	(b)	The relationship	between	Т. І	L and	a is	aiven	hv
---	-----	------------------	---------	------	-------	------	-------	----

For Examiner's Use

$$g = \frac{4\pi^2 L}{T^2} \, .$$

Using your answers in (a), calculate the percentage uncertainty in the value of g.

	uncertainty = % [1]
(c) The	e values of L and T are used to calculate a value of g as $9.751\mathrm{ms^{-2}}$.
(i)	By reference to the measurements of L and T , suggest why it would not be correct to quote the value of g as $9.751\mathrm{ms^{-2}}$.
	[1]
(ii)	Use your answer in (b) to determine the absolute uncertainty in g .
	Hence state the value of g , with its uncertainty, to an appropriate number of significant figures.

$$g = \dots ms^{-2}$$
 [2]

1	A m	etal	wire has a cross-section	on of diameter approximately ().8 mm.
	(a)	Sta	te what instrument sho	uld be used to measure the di	ameter of the wire.
					[1]
	(b)	Sta	te how the instrument i	n (a) is	
		(i)	checked so as to avoi	d a systematic error in the me	asurements,
			·		[1]
		(ii)	used so as to reduce	random errors.	
				A CHANGE OF THE PROPERTY OF TH	[2]
				The state of the s	
				CLASSIFIED	SEA
				International Examinations Papers Mob: +974 55249797 / 55258711 E-ned rashed saba@gmell.com	

Ĩ	A stud	den e.	nt takes readings to me	easure the mean diameter of a	wire using a micrometer screw
	(a) N	/lak	e suggestions, one in	each case, that the student ma	ay adopt in order to
	(i)	reduce a systematic e	error in the readings,	
-	(ii	i)	allow for a wire of var	ying diameter along its length,	
	(iii)	allow for a non-circula	er cross-section of the wire.	
			•	STATE OF THE STATE	
					[3]
	(b) Ti ur	he i	mean diameter of the ertainty in	wire is found to be 0.50 ± 0.02	mm. Calculate the percentage
	(i))	the diameter,	International Examinations Papers Mob: +974 55249797 / 55258711 E-methrashed.seha@guist.com	
				uncertainty =	·
9	(ii)) 1	the area of cross-secti	on of the wire.	
				•	
				uncertainty =	%
					[2]

1	(a)	The spacing b	etween two	atoms in a crystal is 3.	8 × 10 ⁻¹⁰ m. Sta	te this distance	in pm.
				spacin	g =		pm [1]
	(b)	Calculate the t	ime of one o	day in Ms.			
				tim	e =		Ms [1]
	(c)	The distance from to travel from to	rom the Eart he Sun to th	h to the Sun is 0.15 Tn e Earth.	n. Calculate the t	ime in minutes t	for light
	(d)	Underline all th	ne vector qu	tim antities in the list below		r	nin [2]
		distance	energy	momentum Rango	weight	work	[1]
				CLASSIFI	ED		
			200	International Examinations			
				Mob: +974 55249797 / 5525 E-methzeshed.saba()gmeth.	**		

(e) The velocity vector diagram for an aircraft heading due north is shown to scale in Fig. 1.1. There is a wind blowing from the north-west.

For Examiner's Use

Fig. 1.1

The speed of the wind is $36\,\text{m}\,\text{s}^{-1}$ and the speed of the aircraft is $250\,\text{m}\,\text{s}^{-1}$.

- (i) Draw an arrow on Fig. 1.1 to show the direction of the resultant velocity of the aircraft. [1]
- (ii) Determine the magnitude of the resultant velocity of the aircraft.

resultant velocity = ms^{-1} [2]

1 (a) For each of the following, tick [/] one box to indicate whether the experimental technique would reduce random error, systematic error or neither. The first row has been completed as an example.

For Examiner's Use

[2]

	random error	systematic error	neither
keeping your eye in line with the scale and the liquid level for a single reading of a thermometer		/	
averaging many readings of the time taken for a ball to roll down a slope			
using a linear scale on an ammeter		SERANC	
correcting for a non-zero reading when a micrometer screw gauge is closed		TIC TO THE PARTY OF THE PARTY O	

Fig. 1.1

The true value of the time interval is 10.1 s.

(i)	State how the readi	ngs on Fig. 1.1 show the prese	nce of
	1. a systematic er		
	a random error.		[1]
	- a random error.		
			[1]
(ii)	State the expected c	hanges to Fig. 1.1 for experime	• •
	1. more accurate,		
	2. more precise.		[1]
			THE REPORT OF THE PROPERTY OF
			[1]
		CLASSIFIED	
		International Examinations Papers Mob: +874 55249797 / 95258711	
		E-mail:rashed.saba@gnvril.com	

1	Make estimates of the following of	quantities.
	(a) the thickness of a sheet of p	aper
		thickness = mm [1]
	(b) the time for sound to travel 1	00 m in air
		time = s [1]
	(c) the weight of 1000 cm ³ of wa	iter
		weight = N [1]
2	Briefly describe the structures of	crystalline solids, polymers and amorphous materials.
	crystalline solids	
		RG RRANGSO
	polymers	
		CLASSIFIFD
	- Management of the Common Section of the Co	nternational Examinations Papers
	amorphous materials	Mob: +974 55249797 i 55258711 E-mail:rashed.saha@gmail.com
	amerpriede materiale	
		[5]

1 (a) (i)	Define density.
e 4	
(ii)	State the base units in which density is measured.
	[2

(b) The speed v of sound in a gas is given by the expression

$$v = \sqrt{\left(\frac{\gamma \rho}{\rho}\right)},$$

where p is the pressure of the gas of density ρ . γ is a constant.

Given that p has the base units of $kg m^{-1} s^{-2}$, show that the constant γ has no unit.

2 A student uses a metre rule to measure the length of an elastic band before and after stretching it.

The lengths are recorded as

length of band before stretching, L_0 = 50.0 \pm 0.1 cm length of band after stretching, $L_{\rm S}$ = 51.6 \pm 0.1 cm.

Determine

(a) the change in length $(L_S - L_0)$, quoting your answer with its uncertainty,

 $(L_{S} - L_{0}) = \dots$ cm [1]

(b) the fractional change in length, $\frac{(L_{\rm S}-L_{\rm 0})}{L_{\rm 0}}$,

fractional change = [1]

(c) the uncertainty in your answer in (b).

Angwor	all th	_ ~.	.ootiona	:	Maria	200	provided
MISVVCI	an u	e qu	1620012	Ш	uie	spaces	provided

For Examiner's Use

(a) (i) State the SI base un	its of volume.	
	base units of volume	
(ii) Show that the SI bas	e units of pressure are kg m ⁻¹ s ⁻²	
		[1]
(b) The volume <i>V</i> of liquid that	t flows through a pipe in time t is	
	V TIPI	
where P is the pressure di	ference between the ands of the	
	ference between the ends of the n the frictional effects of the liquid	pipe of radius r and length t .
Determine the base units of	f CLASSIFIED	
	International Examinations Papers Mob: +974 55249797 / 55253711	
	E-mail:rashed.saba@gmail.com	
	base units of C	[3]

1

1 (a) Determine the SI base units of power.

For Examiner's Use

SI base units of power[3]

(b) Fig. 1.1 shows a turbine that is used to generate electrical power from the wind.

The power P available from the wind is given by

$$P = CL^2\rho v^3$$

where L is the length of each blade of the turbine, ρ is the density of air, v is the wind speed, C is a constant.

(i) Show that C has no units.

(ii)	The length <i>L</i> of each SI units. The constart The efficiency of the	IL C IS 0.931.			
	Calculate the wind sp	peed.			
					April 1984
		wind spo	eed =		ms ⁻¹ [3]
(iii)	Suggest two reasons power available from	why the electrical po the wind.	ower output of th	e turbine is	s less than the
	1,			••••••	
	2		······································	••••••••	
			YO 5 2		••••••
					[2]
		CLASSIF			
		International Examination Mob: +974 55249797 / 5 E-mail:rashed.saba@gm	5253711		

For Examiner's Use

1	Ene	ergy is stored in a metal wir	re that is extended elastically.		
	(a)	Explain what is meant by	extended elastically.		
					•••••
					[2]
	(b)	Show that the SI units of	energy per unit volume are kg	m ⁻¹ s ⁻² .	
					[2]
	(c)	For a wire extended elastic	cally, the elastic energy per uni	t volumo. V is given by	
		*	any the clastic energy per and	c volume x is given by	
			$X \neq C\varepsilon^2 \bar{E}$		
		where C is a constant,			
		ε is the strain of the	wire,		
		and E is the Young mode			
		Show that <i>C</i> has no units.	CLABBIFIED		
		Show that Chas no units.	International Examinations Papers		
			Mob: +974 55249797 / 55258711 E-mail:rwshed.saba@gmail.com		

[3]

1 (a) Underline all the base quantities in the following list.

ampere charge current mass second temperature weight [2]

(b) The potential energy $E_{\rm P}$ stored in a stretched wire is given by

$$E_{\rm p} = \frac{1}{2}C\sigma^2V$$

where C is a constant, σ is the strain, V is the volume of the wire.

Determine the SI base units of C.

1 (a) Show that the SI base units of power are $kg m^2 s^{-3}$.

[3]

(b) The rate of flow of thermal energy $\frac{Q}{t}$ in a material is given by

$$\frac{Q}{t} = \frac{CAT}{x}$$

where A is the cross-sectional area of the material,

T is the temperature difference across the thickness of the material,

x is the thickness of the material.

C is a constant.

Determine the SI base units of C.

CLASSIFIED
International Examinations Papers
Mob: +974 55249797 / 55258711
E-meiltrashed.seba@gmail.com

base units[4]

1 (a) Use the definition of work done to show that the SI base units of energy are $kg m^2 s^{-2}$.

		[2]
(b)	Define potential difference.	
		•••••
		. [1]
(c)	Determine the SI base units of resistance. Show your working.	

units[3]

1 (a) Use the definition of power to show that the SI base units of power are $kg m^2 s^{-3}$.

[2]

(b) Use an expression for electrical power to determine the SI base units of potential difference.

1 (a) A list of quantities that are either scalars or vectors is shown in Fig. 1.1.

quantity	scalar	vector
distance	1	
energy		
momentum		
power		
time		
weight		

Fig. 1.1

Complete Fig. 1.1 to indicate whether each quantity is a scalar or a vector.

One line has been completed as an example.

[2]

(b) A girl runs 120 m due north in 15 s. She then runs 80 m due east in 12 s.

(i) Sketch a vector diagram to show the path taken by the girl. Draw and label her resultant displacement R.

	(ii) Ca	lculate, for the girl	,		
	1.	the average spe	ed,		
	2.	the magnitude of the initial path.	f the average velocity $\it v$ and i	ts angle with respect to the	e direction of
				Media baranga	
				9664	
			magnitude of $v =$		m s ⁻¹
			angle =		
			CLASSIFIED		[3]
			International Examinations Papers		[Total: 7]
2 (a)	Describe	the effects, one in	Mob: +974 55249797 / 55253711 n each case, of systematic e	rrors and random errors w	hen using a
			o take readings for the diame		
	Systema				

	random	errors:			
	***************************************				[2]
(b)	Distingui	sh between precis	sion and accuracy when mea	suring the diameter of a w	
, .					
					5 0 0

[Total: 4]

[2]

accuracy:

1	(a)	State two SI base units other than kilogram, metre and second.	
		1	
		2	
			[1]
	(b)	Determine the SI base units of resistivity.	

(c)	(i)	A wire of cross-sectional area $1.5\mathrm{mm}^2$ and length $2.5\mathrm{m}$ has a resistance of 0.030Ω .
		Calculate the resistivity of the material of the wire in $n\Omega m$.

			resistivity =	nΩm [3]
(ii)	1.	State what is mea	ant by <i>precision</i> .	
		***************************************	J. S.	
	2.	Explain why the micrometer screw wire.	precision in the value of the v gauge rather than a metre i	resistivity is improved by using a ule to measure the diameter of the
			CLASSIFIED	
			Mob: +874 55249787 KSJA874 \ Mob: +874 55249787 KSJA874 \ G-crusi: Raned Salvellamed Cov	[2]

1	(a)	State two SI I	oase quantities o	other than mass,	length and	time.		
		1						
		2						
							[2	· []
	(b)	A beam is cla shown in Fig.	mped at one en 1.1.	d and an object	X is attache	ed to the othe	er end of the beam, a	S
			!	l		1		
							oscillation of X	
					7/////////		*	
		clamp	b	eam		object X		
				Fig. 7.1				
		The object X is	s made to oscilla	ate vertically.	1 5)			
		The time perio	od T of the oscilla	ations is given by	, ,			
				LAŞŞK	<u>M13</u>			
			in	ternational Examinal	on F Papers			
		where Misth	o mass of Y	Mob: +974 55249797 / : E-maj: restled.subs@gg				

l is the length between the clamp and X, *E* is the Young modulus of the material of the beam

and K is a constant.

(i) 1. Show that the SI base units of the Young modulus are $kg m^{-1} s^{-2}$.

1	(a)	Mass, length and time are SI base quantities. State two other base quantities.
		1
		2
		[2
	(b)	A mass m is placed on the end of a spring that is hanging vertically, as shown in Fig. 1.1.
		111111111111111111111111111111111111111

The mass is made to oscillate vertically. The time period of the oscillations of the mass is T.

The period T is given by

International Examinations Papers

Mob: +974 5524979 m 5258711
E-material and Calapter Trail Com

where C is a constant and k is the spring constant.

Show that C has no units.

	Answer an the questions in the spaces provided.
1 (a)	State two SI base units other than the kilogram, metre and second.
	1
	2
	[2]
(b)	A metal wire has original length $l_{\rm 0}$. It is then suspended and hangs vertically as shown in Fig. 1.1.
	wire
	Fig. 1.1
	The weight of the wire causes it to stretch. The elastic potential energy stored in the wire is <i>E</i> .
	(i) Show that the SI base units of E are kg m² s-2.

Mob: +874 55249797 / 55258711 E-mail:reshed.saba@gmail.com

[2]

(ii) The elastic potential energy E is given by

$$E = C\rho^2 g^2 A l_0^3$$

For Examiner's Use

where ρ is the density of the metal, g is the acceleration of free fall, A is the cross-sectional area of the wire and C is a constant.

Determine the SI base units of C.

1	(a)	Distinguish between systematic errors and random errors.
		systematic errors
		random errors
		[2]
	(b)	A cylinder of length L has a circular cross-section of radius R, as shown in Fig. 1.1.
		R
		Figure
		The volume V of the cylinder is given by the expression $V = \pi R^2 L.$
		The volume and length of the cylinder are measured as
		$V = 15.0 \square 0.5 \text{ cm}^3$ $L = 20.0 \square 0.1 \text{ cm}$ International Examinations Papers Mob. *974 55249797 / 55268711 Semantic as the Operation
		Calculate the radius of the cylinder, with its uncertainty.

1 (a) Make estimates of

(i)	the mass	in kg,	of a	wooden	metre	rule
-----	----------	--------	------	--------	-------	------

mass = kg [1]

(ii) the volume, in cm³, of a cricket ball or a tennis ball.

volume = cm³ [1]

(b) A metal wire of length L has a circular cross-section of diameter d, as shown in Fig. 1.1.

The volume V of the wire is given by the expression

CLAS 54 FIED

The diameter, length and mass Mare measured to determine the density of the metal of the wire. The measured values are: Mob. +974 55249797 / 55258711
E-mell: restred. saba@gmail.com

 $d = 0.38 \pm 0.01 \,\mathrm{mm}$

 $L = 25.0 \pm 0.1$ cm,

 $M = 0.225 \pm 0.001$ g.

Calculate the density of the metal, with its absolute uncertainty. Give your answer to an appropriate number of significant figures.

density = kg m⁻³ [5]

[Total: 7]

1 The uncalibrated scale and the pointer of a meter are shown in Fig. 1.1.

The pointer is shown in the zero position.

The meter is to be used to indicate the volume of fuel in the tank of a car.

A known volume V of fuel is poured into the tank and the deflection θ of the pointer is noted.

Fig. 1.2 shows the variation with θ of V.

Fig. 1.2

- (a) On Fig. 1.1,
- (i) calibrate the scale at 20 × 10³ cm³ intervals,
 (ii) mark a possible position for a volume of 1.0 × 10⁵ cm³.
 (b) Suggest one advantage of this scale, as compared with a uniform scale, for measuring fuel volumes in the tank of the car.

For Examiner's Use

A digital voltmeter with a three-digit display is used to measure the potential of a resistor. The manufacturers of the meter state that its accuracy is ±1% and The reading on the voltmeter is 2.05 V.	difference across d ±1 digit.
--	----------------------------------

- (a) For this reading, calculate, to the nearest digit,
 - (i) a change of 1% in the voltmeter reading,

	change =
the maximum possible	value of the potential difference across the resistor.
	Rase Coll
	CLASSIFIED
	International Examinations Papers
	Mob: +974 55249797 / 55258711 E-mail:rashed.saba@gmail.com

	maximum value =V [1]
(b)	The reading on the voltmeter has high precision. State and explain why the reading may not be accurate.

(ii)

Examiner's Use

2 (a) The distance *s* moved by an object in time *t* may be given by the expression

;	=	$\frac{1}{2}at^2$
		2 41

where a is the acceleration of the object.

State two conditions for this expression to apply to the motion of the object.

1.

2.

[70]

(b) A student takes a photograph of a steel ball of radius 5.0 cm as it falls from rest. The image of the ball is blurred, as illustrated in Fig. 2.1. The image is blurred because the ball is moving while the photograph is being taken.

Fig. 2.1

The scale shows the distance fallen from rest by the ball. At time t = 0, the top of the ball is level with the zero mark on the scale. Air resistance is negligible.

	Cal	culate, to an appropriate number of significant figures,
	(i)	the time the ball falls before the photograph is taken,
		time = s [3]
	(ii)	time = s [3] the time interval during which the photograph is taken.
(c)	The	student in (b) takes a second photograph starting at the same position on the scale.
		student in (b) takes a second photograph starting at the same position on the scale. ball has the same radius but is less dense, so that air resistance is not negligible. Mobi: +074.55249797/55258711 E-mell:rashed.saba@gmail.com e and explain the changes that will occur in the photograph.

	•	[2]

For Examiner's Use

1 (a) One of the equations of motion may be written as

$$v^2 = u^2 + 2as$$
.

- (i) Name the quantity represented by the symbol a.
- (ii) The quantity represented by the symbol *a* may be either positive or negative. State the significance of a negative value.

[2]

(b) A student investigates the motion of a small polystyrene sphere as it falls from rest alongside a vertical scale marked in centimetres. To do this, a number of flash photographs of the sphere are taken at 0.1 s intervals, as shown in Fig. 1.1.

Fig. 1.1

The first photograph is taken at time t = 0.

By reference to Fig. 1.1,

(i)	briefly explain how it can be deduced that the sphere reaches a constant speed,
••••	

	(ii)	det	ermine the distan	ice that the spl	nere has fallen fro	m rest during	a time of
		1.	0.7 s,				
					distance =		cm
		2.	1.1 s.				
					,		
					distance =	******************	cm
							[4]
(c)	The	stu	dent repeats the	experiment	with a lead sph	nere that falls	with constant
	acce	elera	tion and does not	reach a const	ant speed.		
	Dete	ermir	e the number of	flash photogra	aphs that will be	observed aga	inst the 160 cm
	scal	∋.		CLAS	SRED		
	Inclu	ide ir	n your answer the	photograph o	btained at time t	= 0.	
					249797 / 55258711 Lsaba@gmail.com		
					Ŧ		
					number =		[3]
					·		

2 A student investigates the speed of a trolley as it rolls down a slope, as illustrated in Fig. 2.1.

For Examiner's Use

Fig. 2.1

The speed v of the trolley is measured using a speed sensor for different values of the time t that the trolley has moved from rest down the slope.

Fig. 2.2 shows the variation with t of v.

Fig. 2.2

(a) 0	se Fig. 2.2 to determine the acceleration of the trolley at the point on the graph where = 0.80 s.
	acceleration = m s ⁻² [4]
(b) (i)	
	than 0.6 s. Justify your answer by reference to Fig. 2.2.
	A LINEAR CRITA
	[2]
(ii)	Suggest an explanation for this change in acceleration.
	International Examinations Papers [1]
(c) Na	me the feature of Fig. 2.2 that indicates the presence of
(i)	random error,
	[1]
(ii)	systematic error.
	[1]

For Examiner's Use 3 A student has been asked to determine the linear acceleration of a toy car as it moves down a slope. He sets up the apparatus as shown in Fig. 3.1.

Fig. 3.1

The time t to move from rest through a distance d is found for different values of d. A graph of d (y-axis) is plotted against t^2 (x-axis) as shown in Fig. 3.2.

Fig. 3.2

[2]

(a) Theory suggests that the graph is a straight line through the origin. Name the feature on Fig. 3.2 that indicates the presence of

(i) random error,

(ii) systematic error.

(b) (i) Determine the gradient of the line of the graph in Fig. 3.2.

acceleration = $m s^{-2}$ [3]

For Examiner's Use

1 (a) The drag force D on an object of cross-sectional area A, moving with a speed v through a fluid of density ρ , is given by

$$D = \frac{1}{2} C \rho A v^2$$

where C is a constant.

Show that C has no unit.

[2]

- (b) A raindrop falls vertically from rest. Assume that air resistance is negligible.
 - (i) On Fig. 1.1, sketch a graph to show the variation with time t of the velocity v of the raindrop for the first 1.0s of the motion.

Fig. 1.1

[1]

(ii) Calculate the velocity of the raindrop after falling 1000 m.

velocity = ms⁻¹ [2]

(c) In practice, air resistance on raindrops is not negligible because there is a drag force. This drag force is given by the expression in (a).

For Examiner's Use

(i) State an equation relating the forces acting on the raindrop when it is falling at terminal velocity.

[1]

- (ii) The raindrop has mass 1.4×10^{-5} kg and cross-sectional area 7.1×10^{-6} m². The density of the air is 1.2 kg m⁻³ and the initial velocity of the raindrop is zero. The value of C is 0.60.
 - 1. Show that the terminal velocity of the raindrop is about $7 \,\mathrm{m}\,\mathrm{s}^{-1}$.

[2]

2. The raindrop reaches terminal velocity after falling approximately 10 m. On Fig. 1.1, sketch the variation with time 1 of velocity v for the raindrop. The sketch should include the first 5 s of the motion.

[2]

CLASSIFIED
International Examinations Papers
Mob: +974 55249797 / 55253711
E-mail:reshed.seba@gmail.com

1 (a) Complete Fig. 1.1 by putting a tick (✓) in the appropriate column to indicate whether the listed quantities are scalars or vectors.

quantity	scalar	vector
acceleration		
force		
kinetic energy		
momentum	*	,
power		
work		

Fig. 1.1

(b) A floating sphere is attached by a cable to the bottom of a river, as shown in Fig. 1.2.

Fig. 1.2

The sphere is in equilibrium, with the cable at an angle of 75° to the horizontal. Assume that the force on the sphere due to the water flow is in the horizontal direction.

The radius of the sphere is 23 cm. The sphere is solid and is made from a material of density $82\,\mathrm{kg}\,\mathrm{m}^{-3}$.

(i) Show that the weight of the sphere is 41 N.

[2]

(ii) The tension in the cable is 290 N.

Determine the upthrust acting on the sphere.

(iii)	upthrust = Explain the origin of the upthrust acting on the sphere.	N [2	2]
		[1 Total: 7	•

1 (a) Determine the SI base units of stress. Show your working.

base units[2]

(b) A beam PQ is clamped so that the beam is horizontal. A mass *M* of 500 g is hung from end Q and the beam bends slightly, as illustrated in Fig. 1.1.

The length l of the beam from the edge of the clamp R to end Q is 60.0 cm. The width b of the beam is 30.0 mm and the thickness d of the beam is 5.00 mm. The material of the beam has Young modulus E.

The mass M is made to oscillate vertically. The time period T of the oscillations is 0.58 s.

The period T is given by the expression d.saba@gmail.com

$$T = 2\pi \sqrt{\frac{4Ml^3}{Ebd^3}}.$$

(i) Determine E in GPa.

E =GPa [3]

5

ii)	Th	The quantities used to determine E should be measured with accuracy and with precis		
	1.	Explain the difference between accuracy and precision.		
		accuracy:	·.	•••••
		precision:		
				[2
	2.	In a particular experiment, the quantities l and T are me percentage uncertainty. State and explain which of these two more to the uncertainty in the value of E .	easured with o quantities	the same contributes
			***************************************	*************

[Total: 8]

1 The volume of fuel in the tank of a car is monitored using a meter as illustrated in Fig. 1.1.

Fig. 1.1

The meter has an analogue scale. The meter reading for different volumes of fuel in the tank is shown in Fig. 1.2.

Fig. 1.2

The meter is calibrated in terms of the fraction of the tank that remains filled with fuel.

(a)	The tan	e car uses 1.0 litre of fuel when travelling 14 km. The car starts a journey with a full k of fuel.		
	(i)	Calculate the volume of fuel remaining in the tank after a journey of 210 km.		
		volume = litres [2]		
	(ii)	Use your answer to (i) and Fig. 1.2 to determine the change in the meter reading during the 210 km journey.		
		from <i>full</i> to[1]		
(b)	The	re is a systematic error in the meter.		
	(i)	State the feature of Fig. 1.2 that indicates that there is a systematic error.		
		[1]		
	(ii)	Suggest why, for this meter, it is an advantage to have this systematic error.		
		[1]		

For Examiner's Use