www.mrc-papers.com

Matter and materials: 7

TOPIC- Density, pressure, compressive and tensile forces, **HOOKE'S LAW**, modulus of elasticity (Young), Experiment, elastic potential energy

(a)	Dist	tinguish between the structure of a metal and of a polymer.
	met	tal:
	•••••	
	poly	/mer:
		[4]
(b)	Late	ex is a natural form of rubber. It is a polymeric material.
	(i)	Describe the properties of a sample of latex.
		[2]
	(ii)	The process of heating latex with a small amount of sulphur creates cross-links between molecules. Natural latex has very few cross-links between its molecules.
		Suggest how this process changes the properties of latex.
		CLASSIFIED
		International Examinations Papers
		Mob: +974 55249797 / 59258711 E-mail:rashed.saba@gmail.com

.0.1

02	(a)	State Hooke's law.
		[1]
	(b)	A spring is attached to a support and hangs vertically, as shown in Fig. 6.1. An object M of mass 0.41 kg is attached to the lower end of the spring. The spring extends until M is at rest at R.
		spring spring spring spring
		R M S S S
		about 0.16 m. CIASSIFIE International Examinations Papers Mob: +974 55249797 / 55253711 E-mail:reched.seba@gonal.com
		[2]
	(c)	The object M in Fig. 6.1 is pulled down a further 0.060 m to S and is then released. For M, just as it is released,
		(i) state the forces acting on M,
		[1]
		(ii) calculate the acceleration of M.
		$acceleration = ms^{-2} [3]$

(d)	Describe and explain the energy changes from the time the object M in Fig. 6.1 is released to the time it first returns to R.	
	100	

(a)	Def	ne			
	(i)	stress,			
					•••••
					[1]
	(ii)	strain.			
			y.		
					[1]
(b)	Ехр	lain the term <i>elastic li</i>	mit.		
	,				
		••••••			[1]
(c)	Ехр	lain the term <i>ultimate</i>	tensile stress.		
	•••••				
			mrc		•••••
					[2]
(d)	(i)	A ductile material in Fig. 3.1, sketch the vi	the form of a wire is stre	tched up to its breaking poin	t. On
		F A	International Examinations Pag		
		·	Mob: +874 55249787 / 55258715 E-mail:rested.sabaźżym.jil.com	REARRANGED	
				RASHED CHO	T-000 (110 (110 (110 (110 (110 (110 (110
				Mob: +974 55373670 / 33787500 E-mall:chyınrc.muhammad@gmail.cor	m
		0		X	
			Fig. 3.1		
					[2]

3

Fig. 3.2

[1]

(e) (i) Explain the features of the graphs in (d) that show the characteristics of ductile and brittle materials.

(ii) The force F is removed from the materials in (d) just before the breaking point is reached. Describe the subsequent change in the extension for

1. the ductile material,

2. the brittle material.

(i)	Define the terms
	1. tensile stress,
	[1]
	2. tensile strain,
34	[1]
	3. the Young modulus.
	e. the roung modulus.
	[1]
(ii)	Suggest why the Young modulus is not used to describe the deformation of a liquid or a gas.
	((nrc))) [1]
Tho	
by Δ	change ΔV in the volume V of some water when the pressure on the water increases p is given by the expression
	1AP Tat 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
who	Main any anglanggry i napangga
In m	re Δp is measured in pascal mail reshed seba@gmail.com any applications, water is assumed to be incompressible.
By re	eference to the expression, justify this assumption.

2	
	[2]
	(ii) The by △

(c) Normal atmospheric pressure is $1.01 \times 10^5 \, Pa$.

For Examiner's Use

Divers in water of density $1.08 \times 10^3 \, \text{kg} \, \text{m}^{-3}$ frequently use an approximation that every 10 m increase in depth of water is equivalent to one atmosphere increase in pressure. Determine the percentage error in this approximation.

error = % [3]

			1 11				
(a)	Define	e the <i>Young modu</i>	lus				
\- -/	20	o the roung modu					
	••••••					***************************************	•••••
	•••••			***************************************		• • • • • • • • • • • • • • • • • • • •	[1
(b)	Two w	vires P and Q of t	the same material a	and same original	inal length	l_0 are fixed	so that they
	nang v	vertically, as show	n in Fig. 5.1.	Ŧ.			
		'////		////////////	///////		
						GEARRAN	IGEO
			$P = \begin{bmatrix} l_0 \end{bmatrix}$	$\frac{1}{2} \left l_0 \right $		CAR S	137
				۹ ^۱ ۰۰	v		
					×		
					4	CIE AND THE	
			₩-¥-	-1 -	1	RASHI	0 9
						Mob: +974 553736 E-mail:chymrc.muhan	70 / 33787500 1mad@gmail.com
			4	\			
			F	F			
			Fig. 5.1 (not	to scale)			
	The di-	amotor of D is do	and the displayar	Wad The L	f	C is a said and	X - 41 - 1
	end of	each wire.	and the diameter of	uns zu. me s	ame iorce	r is applied	to the lower
			LOTAGE				
	Show	your working and	determine the ratio				
		etrose in D	International Examin	*			
	(i)	stress in P stress in Q	Mob: +974 5524975 E-mail:rashed.saba	/7 / 55253711 @gmail.com			
		30 033 III Q					
				ratio =			[0]
				rau0 =			[2]
	(ii)	strain in P					
	, ,	strain in Q					
				ratio =			[2]

06	(a)	Explain what is meant by p	plastic deformation.				
			[1]				
	(b)	A copper wire of uniform of breaking stress of 2.20 × 1	cross-sectional area $1.54 \times 10^{-6} \text{m}^2$ and length 1.75m has a 0^8Pa . The Young modulus of copper is $1.20 \times 10^{11} \text{Pa}$.				
		(i) Calculate the breaking	g force of the wire.				
S.							
	breaking force = N [2]						
		(ii) A stress of $9.0 \times 10^7 P$	a is applied to the wire. Calculate the extension.				
			CARCON CONTRACTOR OF THE PARTY				
			International Eextension Tapers				
	(c)	Explain why it is not approwhen the breaking force is	priate to use the Young modulus to determine the extension applied.				
			[1]				

- 0 7 A student measures the Young modulus of a metal in the form of a wire.
 - (a) Describe, with the aid of a diagram, the apparatus that could be used.

		CLASSIFIED TO THE PROPERTY OF	
		Mcb: +974.652.49797/3523573; Email:parks(arbacksonat.com	[2]
(b)	Describe the method used	to obtain the required measure	ements.
			·
			[4]

Describe how the measurements taken can be used to determine the Young modulus.					
*					
		,			
		[4]			

(c)

n	Q	(a)	Define
()	8	(a)	Deline

 	 •••••	 [1]

(ii) strain.

(i) stress,

[1]

(b) The Young modulus of the metal of a wire is 0.17 TPa. The cross-sectional area of the wire is 0.18 mm².

The wire is extended by a force F. This causes the length of the wire to be increased by 0.095%.

Calculate

(i) the stress,

stress = Pa [4]

(ii) the force F.

F = N [2]

09	(a)	The	iniform wire has length L and constant area of cross-section A . The material of the wire has Young modulus E and resistivity ρ . The ension F in the wire causes its length to increase by ΔL .	
		For	this wire, state expressions, in terms of L, A, F, ΔL and $ ho$ for	
		(i)	the stress σ ,	
		(ii)	the strain $arepsilon$,	[1]
		(iii)	the Young modulus E ,	[1]
		(iv)	the resistance R.	[1]
	(b)		e end of a metal wire of length 2.6 m and constant area of cross-section 3.8 × 10 ⁻⁷ n ttached to a fixed point, as shown in Fig. 4.1 wire 2.6 m International Laminations Papers Mob: +974 s 2/4978 / 552/58711 Load Lo	[1] m ²
			30 N	

The Young modulus of the material of the wire is 7.0 \times $10^{10}\,\text{Pa}$ and its resistivity is 2.6 \times $10^{-8}\,\Omega\,\text{m}.$

For Examiner's Use

A load of 30 N is attached to the lower end of the wire. Assume that the area of cross-section of the wire does not change. For this load of 30 N,

(i) show that the extension of the wire is 2.9 mm,

[1]

(ii) calculate the change in resistance of the wire.

 Ω [2]

(c)	The resistance of the wire changes with the applied load. Comment on the suggestion that this change of resistance could be used to measure the magnitude of the load on the wire.
	[2]

1 0 A spring is kept horizontal by attaching it to points A and B, as shown in Fig. 4.1.

Fig. 4.1

Point A is on a movable slider and point B is on a fixed support. A cart of mass 1.7 kg has horizontal velocity v towards the slider. The cart collides with the slider. The spring is compressed as the cart comes to rest. The variation of compression x of the spring with force F exerted on the spring is shown in Fig. 4.2.

Fig. 4.2

Fig. 4.2 shows the compression of the spring for $F = 1.5\,\mathrm{N}$ to $F = 4.5\,\mathrm{N}$. The cart comes to rest when F is 4.5 N.

(a) Use Fig. 4.2 to

(i)	show that the compression of the spring obeys Hooke's law,	
		ro

	(ii) determine the spring constant of the spring,		
		*	
		ī	
	spring constant	=	N m ⁻¹ [2]
	(iii) determine the elastic potential energy $E_{\rm P}$ step brought to rest.	ored in the spring	due to the cart being
	The second secon	_ ^	. [2]
	mro		J [3]
(a)	b) Calculate the speed v of the cart as it makes conkinetic energy of the cart is converted to the elastic	ntact with the slide	er. Assume that all the
			the spring.
	CLASSIE		
	International Transpositions Pa	*	
	Nob: +974 55249797 / 9525874 E-mail:rached.sebn@gmzil.com		
	speed =	•	m s ⁻¹ [2]
			[2]

A trolley T moves at speed 1.2 m s⁻¹ along a horizontal frictionless surface. The trolley collides with a stationary block on the end of a fixed spring, as shown in Fig. 3.1.

Fig. 3.1

The mass of T is 250 g. T compresses the spring by 5.4 cm as it comes to rest. The relationship between the force F applied to the block and the compression x of the spring is shown in Fig. 3.2.

Fig. 3.2

- (a) Use Fig. 3.2 to determine
 - (i) the spring constant of the spring,

spring constant = Nm⁻¹ [2]

		work done =	J[
o) The	e spring then expands the time that T loses co	and causes T to move in a directing and causes T to move in a direction and the block, it is moving a	on opposite to its initial direction to a speed of 0.75 m s ⁻¹ .
Fro	m the time that T is in o	contact with the block,	
(i)	describe the energy c	hanges,	
	•••••		
			[
(ii)	determine the change	in momentum of T	
		International Examinations Papers Mob: +974 55249797 / 55258711	
		E-mail:rashed.saba@gmail.com	
		ş.	
		,	
		change in momentum =	Ns [2

(ii) the work done by T compressing the spring by 5.4 cm.

(b	 • T	he vari	atior									····															•••
,	•		8.0				1310		11	TTT	TT	TT	C ,		n a	<u>ا</u> د	7111	т. Т.	T 1		110	VVI I	111		. 0.	1.	
																						7					
			6.0																/					P	RANG	ED	AND SOUTH
		F/N	4.0												/										IC 了		SSIFIED
																						Mc	•		ISHED 373870	C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	500
			2.0										5 %									-mail	chyir	nc.nt	harnm	ad@gm	
			0																								
				0			2	(4 Fia	. 6	.1		6					8	x /	10	-2 n	์ า			
	Tł	ne poin	t L o	n th	e g	rapl	ı is		e el	las	tic	lim	it (e le	spi	inç	J .									
	(i)	Des	cribe	the	e m	eani	ing	of																			
			•••••	••••	••••	•••••	•••••	••••	••••	••••	••••	••••	••••	•••••	••••	••••	••••		••••	• • • • •		••••					
					•••••					•••••																	
	(ii)	Calc	ulate	e the	e sp	ring	gico	ons	tan	ıt <i>k</i>	Δ fo	or s	spr	ing	Α.												

	(III) Calculate the work	done in extending the spring wit	h a force of 6.4 N.
		work done	. [0]
			J [2]
(c)	A second spring B of s Fig. 6.2.	spring constant 2 <i>k</i> _A is now joi	ned to spring A, as shown in
×		spring A	
		spring B	
		6.4 N	
		Fig. 6.2	
	A force of 6.4 N extends t	the combination of springs.	
	For the combination of sp	orings, calculateSTFLF	AND THE PROPERTY OF THE PROPER
	(i) the total extension,	International Examinations Papers	
		Mob: +974 55249797 / 35258731 E-mail reshed.seba@gnusil.com	
		extension =	m [1]
	4	, 5,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	(ii) the spring constant.		

spring constant = $N m^{-1}$ [1]

(a) A metal wire has spring constant *k*. Forces are applied to the ends of the wire to extend it within the limit of Hooke's law.

Show that, for an extension *x*, the strain energy *E* stored in the wire is given by

For Examiner's Use

$$E = \frac{1}{2}kx^2.$$

[4]

(b) The wire in (a) is now extended beyond its elastic limit. The forces causing the extension are then removed.

The variation with extension x of the tension F in the wire is shown in Fig. 4.1.

Fig. 4.1

Energy $E_{\rm S}$ is expended to cause a permanent extension of the wire.

(i) On Fig. 4.1, shade the area that represents the energy $E_{\rm S}$.

[1]

(ii)	Use	Fig.	4.1	to	calculate	the	energy	E_{ς}
------	-----	------	-----	----	-----------	-----	--------	-----------------

	E _S = mJ [3]
(iii)	Suggest the change in the structure of the wire that is caused by the energy $E_{\rm S}$.
	[1]

A spring is placed on a flat surface and different weights are placed on it, as shown in Fig. 2.1.

For Examiner's Use

Fig. 2.1

The variation with weight of the compression of the spring is shown in Fig. 2.2.

Fig. 2.2

The elastic limit of the spring has not been exceeded.

(a) (i) Determine the spring constant k of the spring.

k	=	 N m ⁻¹	[2]
,,		 14 [1]	14

(ii) Deduce that the strain energy stored in the spring is 0.49 J for a compression of 3.5 cm.

For Examiner's Use

[2]

(b) Two trolleys, of masses 800 g and 2400 g, are free to move on a horizontal table. The spring in **(a)** is placed between the trolleys and the trolleys are tied together using thread so that the compression of the spring is 3.5 cm, as shown in Fig. 2.3.

speed of trolley of mass 800 g speed of trolley of mass 2400 g

is equal to 3.0.

(ii) Use the answers in (a)(ii) and (b)(i) to calculate the speed of the trolley of mass 800 g.

For Examiner's Use

speed = ms⁻¹ [3]

15 (a) The variation with extension x of the tension F in a spring is shown in Fig. 3.1.

For Examiner's Use

Use Fig. 3.1 to calculate the energy stored in the spring for an extension of 4.0 cm. Explain your working.

International Examinations Papers

Mob: +974 55249797 / 55258711 E-mail:rashed.saba@gmail.com

energy:	=	 J	[3]

(b) The spring in **(a)** is used to join together two frictionless trolleys A and B of mass M_1 and M_2 respectively, as shown in Fig. 3.2.

For Examiner's Use

Fig. 3.2

The trolleys rest on a horizontal surface and are held apart so that the spring is extended.

The trolleys are then released.

		xtension of the spring is reduct but opposite in direction to the	
		(#/mc)	ng pagadan ang
		Acres de la constant	The control of the co
	·	CLASSIFIED	
trol	ley B has speed <i>V</i> ₂ ite down	International Examinations Papers e extension of the spring is zee . E-meltrashed.saba@gmail.com ed on momentum, to relate V ₁	Action of the control
2.	an equation to r	elate the initial energy E sto	ored in the spring to the fir
	energies of the tr		· · · · ·

(iii) 1. Show that the kinetic energy $E_{\rm K}$ of an object of mass m is related to its momentum p by the expression

For Examiner's Use

 $E_{\rm K} = \frac{p^2}{2m}.$

[1]

Trolley A has a larger mass than trolley B.
 Use your answer in (ii) part 1 to deduce which trolley, A or B, has the larger kinetic energy at the instant when the extension of the spring is zero.

CLASSIFIED
International Examinations Papers
Mob: +974 55249797 / 35258711
E-mail:rashed.saba@gmail.com

16 (a) State Hooke's Law.

For Examiner's Use

(b) A spring is compressed by applying a force. The variation with compression x of the force F is shown in Fig. 4.1.

spring constant = N m⁻¹ [1]

(ii) Show that the work done in compressing the spring by $36\,\mathrm{mm}$ is $0.81\,\mathrm{J}$.

[2]

(c) A child's toy uses the spring in (b) to shoot a small ball vertically upwards. The ball has a mass of 25 g. The toy is shown in Fig. 4.2.

For Examiner's Use

Fig. 4.2

(i) The spring in the toy is compressed by 36 mm. The spring is released. Assume all the strain energy in the spring is converted to kinetic energy of the ball. Using the result in (b)(ii), calculate the speed with which the ball leaves the spring.

(ii) Determine the compression of the spring required for the ball to leave the spring with twice the speed determined in (i).

International Examinations Papers
Mob: +974 55249797 / 55258741
E-mail:rashed.saba@gmail.com

(iii) Determine the ratio

maximum possible height for compression in (i) maximum possible height for compression in (ii)

17 (a) Fig. 3.1 shows the variation with tensile force of the extension of a copper wire.

Fig. 3.1

(i)	Sta	State whether copper is a ductile, brittle or polymeric material.				
(ii)	1.	On Fig.3.1, mark law does not appl	with the letter L the point on y.	he line beyond which Hooke's		
	2.	State how the spr	ing constant for the wire may t	e obtained from Fig. 3.1.		
			CLASSITIED Brown Brown Brown			
			Mob: +978 55248797 / 55258711 E-mail:reshec.sabz@gmail.com	[3]		

(b) A copper wire is fixed at one end and passes over a pulley. A mass hangs from the free end of the wire, as shown in Fig. 3.2.

Fig. 3.2

The length of wire between the fixed end and the pulley is 2.5 m. When the mass on the wire is increased by 6.0 kg, a pointer attached to the pulley rotates through an angle of 6.5°. The pulley, of diameter 3.0 cm, is rough so that the wire does not slide over it.

1. show that the wire extends by 0.17 cm,

CIASSIFID

International Examinations Papers

Mobi: +874 55249797 / 55262711

E-mailtrashed.saba@emed.com

2. calculate the increase in strain of the wire.

increase in strain =

The Young modulus of the material of a wire can be determined using the apparatus shown in Fig. 3.1.

Fig. 3.1

One end of the wire is clamped at C and a marker is attached to the wire above a scale S. A force to extend the wire is applied by attaching masses to the other end of the wire.

The reading X of the marker on the scale S is determined for different forces F applied to the end of the wire. The variation with X of F is shown in Fig. 3.2.

Fig. 3.2

Use the gradient of the the wire in TPa.	line in Fig. 3.2 to o	determine the Y	oung modu	llus E of the	e material
					ě
		*			
		<i>F</i> =	••••••		TDa
			••••••••••	******************	11 a
-					
The experiment is repeat	ed with a thicker w	rire of the same	material ar	nd length.	
State how the range of					ge of sca
State how the range of readings as in Fig. 3.2.	the force F must	be changed to			ge of sca
State how the range of		be changed to			ge of sca
State how the range of	the force F must	be changed to			ge of sca
State how the range of	the force F must	be changed to			ge of sca
State how the range of	the force F must	be changed to			ge of sca
State how the range of	the force Finust	be changed to			
State how the range of	the force Finust	be changed to			
State how the range of	the force Finust	be changed to			
State how the range of	the force Finusi	be changed to			
State how the range of	the force Finus Mobile Hard Examinate Examination of the Hard Section of the Hard Sec	be changed to			
State how the range of	the force Finus Mobile Hard Examinate Examination of the Hard Section of the Hard Sec	be changed to			
State how the range of readings as in Fig. 3.2.	the force Finus Mobile Hard Examinate Examination of the Hard Section of the Hard Sec	be changed to			
State how the range of	the force Finust	be changed to			
State how the range of readings as in Fig. 3.2.	the force Finust	be changed to			[Total:
State how the range of readings as in Fig. 3.2.	the force Finust	be changed to		same ran	[Total:
State how the range of readings as in Fig. 3.2.	the force Finust Assection of the control of the c	be changed to			[Total:

(a) The length of the wire from C to the marker for F = 0 is 3.50 m. The diameter of the wire is

0.38 mm.

Fig. 4.1 shows the values obtained in an experiment to determine the Young modulus *E* of a metal **9** in the form of a wire.

quantity	value	instrument				
diameter d	0.48 mm					
length <i>l</i>	1.768 m					
load F	5.0 N to 30.0 N in 5.0 N steps					
extension <i>e</i>	0.25 mm to 1.50 mm					

Fig. 4.1

(a)	(i) Complete Fig. 4.1 with the name of an instrument that could be used to measure each o the quantities.								
	(ii)	Explain why	a series o	of values of <i>F</i>	, each with c	orrespond	ding extens	sion e, are	
					ABANGO N				
		***************************************			nre)			***************************************	[1]
b)	Exp You	lain how a se ng modulus o	eries of rea	adings of the	quantities g	iven in Fi	g. 4.1 is u	sed to dete	
		J		V.LAD			equirea.		
				Mob: +974 5	kanbastions Pap 5249797 / 55255711 6.50ba@gmail.com				
						*****************************	••••••••••	***************************************	•••••••
					***************************************		***************************************		for

20	(a)	Def	fine, for a wire,	
		(i)	stress,	
		(ii)	strain.	[1]
	(L)			 [1]
	(b)	A wi	ire of length 1.70m hangs vertically from a fixed point, as shown in Fig. 4.1.	
			-////	
			wire	
			Mob: +974 55373670 / 33787500 E-mail:chymrc.muhammad@gmail.com	
	1	roun	wire has cross-sectional area 5.74 × 10.78 m² land is made of a material that has a g modulus of 1.60 × 10 ¹¹ Pa.A load of 25.0 N is hung from the wire.	a
	z ((i) (Calculate the extension of the wire.	
			extension = m [3]	1
	(ii	LV	The same load is hung from a second wire of the same material. This wire is wice the length but the same volume as the first wire. State and explain how the extension of the second wire compares with that of the first wire.	
		•		
			[3]	. 1
				1

(a) A metal wire has an unstretched length L and area of cross-section A. When the wire supports a load F, the wire extends by an amount ΔL . The wire obeys Hooke's law.

For Examiner's Use

Write down expressions, in terms of L, A, F and ΔL , for

(i)	the applied stress,	
(ii)	the tensile strain in the wire,	
iii)	the Young modulus of the material of the wire.	
		[3]

(b) A steel wire of uniform cross-sectional area 7.9×10^{-7} m² is heated to a temperature of 650 K. It is then clamped between two rigid supports, as shown in Fig. 5.1.

The wire is straight but not under tension and the length between the supports is 0.62 m. The wire is then allowed to cool to 300 K.

When the wire is allowed to contract freely, a 1.00 m length of the wire decreases in length by 0.012 mm for every 1 K decrease in temperature.

(i) Show that the change in length of the wire, if it were allowed to contract as it cools from 650 K to 300 K, would be 2.6 mm.

(11)	The Young modulus of steel is 2.0×10^{11} Pa. Calculate the tension in the wire at 300 K, assuming that the wire obeys Hooke's law.
a ar	tension = N [2]
(iii)	The ultimate tensile stress of steel is 250 MPa. Use this information and your answer in (ii) to suggest whether the wire will, in practice, break as it cools.
	WESSENGED TO THE REAL PROPERTY OF THE PROPERTY

International Examinations Papers
Mob: ~976 55249757 : 532587 :1
E-metrashed saba@good.com

An aluminium wire of length 1.8 m and area of cross-section 1.7×10^{-6} m² has one end fixed to a rigid support. A small weight hangs from the free end, as illustrated in Fig. 9.1.

Fig. 9.1

The resistance of the wire is $0.030\,\Omega$ and the Young modulus of aluminium is $7.1\times10^{10}\,\text{Pa}.$

The load on the wire is increased by 25 N.

(a) Calculate

(i) the increase in stress,

(ii) the change in length of the wire.

change = m

[4]

(b) Assuming that the area of cross-section of the wire does not change when the load is increased, determine the change in resistance of the wire.

change = Ω [3]

23 (a) Force is a vector quantity. State three other vector quantitie	23	} (a	Force is a	vector	quantity.	State three	other	vector	quantitie
---	----	------	------------	--------	-----------	-------------	-------	--------	-----------

1					
			**************	*******************	
2					
	,	*****************		**************	************
3	*****				
	*	• • • • • • • • • • • • • • • • • • • •	***************	************************	(21

(b) Three coplanar forces X, Y and Z act on an object, as shown in Fig. 3.1.

Fig. 3.1

The force Z is vertical and X is horizontal. The force Y is at an angle θ to the horizontal. The force Z is kept constant at 70 N.

In an experiment, the magnitude of force X is varied. The magnitude and direction of force Y are adjusted so that the object remains in equilibrium.

Fig. 3.2 shows the variation of the magnitude of force Y with the magnitude of force X.

Fig. 3.2

	(1)	0.50 Fig. 5.2 to estimate the magnitude of 101 10.	
	¥	Y =	N [1
	(ii)	State and explain the value of θ for $X = 0$.	
			[2
	(iii)	The magnitude of X is increased to 160 N. Use resolution of forces to ca of	alculate the value
		1. angle θ ,	
		REGRANGED	
		heta=	° [2]
		2. the magnitude of force YASSIFIED	
		International Examinations Papers Mob: +874 55249787 / 55258711	
		E-mail:respect.saha@gmail.com	
		Y =	N [2]
(c) Th	the angle θ decreases as X increases. Explain why the object cannot be in θ	
	,,,,		******************************
	****		[1]

9702/23/O/N/14

© UCLES 2014

[Turn over

2 4 (a) Tensile forces are applied to opposite ends of a copper rod so that the rod is stretched. The variation with stress of the strain of the rod is shown in Fig. 5.1.

For Examiner's Use

(i) Use Fig. 5.1 to determine the Young modulus of copper.

Young modulus = Pa [3]

(ii) On Fig. 5.1, sketch a line to show the variation with stress of the strain of the rod as the stress is reduced from 2.5 × 10⁶ Pa to zero. No further calculations are expected. [1]

(b) The walls of the tyres on a car are made of a rubber compound. The variation with stress of the strain of a specimen of this rubber compound is shown in Fig. 5.2.

Fig. 5.2

As the car moves, the wall	s of the tyres bend and straigh	ten continuously.
Use Fig. 5.2 to explain why	the walls of the tyres become	warm.
	CIACCIFIED	
	International Examinations Papers	[3]
	Mob: +978 55289797 / 55258711 E-unitrashed.saba@gnoit.com	[0]

25 A metal ball of mass 40 g falls vertically onto a spring, as shown in Fig. 4.1.

Fig. 4.1 (not to scale)

The spring is supported and stands vertically. The ball has a speed of 2.8 m s⁻¹ as it makes contact with the spring. The ball is brought to rest as the spring is compressed.

(a) Show that the kinetic energy of the ball as it makes contact with the spring is 0.16 J.

Fig. 4.2

The ball produces a maximum compression $X_{\rm B}$ when it comes to rest. The spring has a spring constant of $800\,{\rm N\,m^{-1}}$. Use Fig. 4.2 to

(i) calculate the compression $X_{\rm B}$,

$$X_{\rm B} = \dots m [2]$$

(ii) show that not all the kinetic energy in (a) is converted into elastic potential energy in the spring.

[2]

2 6 A glass fibre of length 0.24 m and area of cross-section 7.9×10^{-7} m² is tested until it breaks. The variation with load *F* of the extension *x* of the fibre is shown in Fig. 4.1.

For Examiner's Use

(a) State whether glass is ductile, brittle or polymeric.

.....[1

(b) Use Fig. 4.1 to determine, for this sample of glass in E-mail:raehed.saba@gmail.com

(i) the ultimate tensile stress,

ultimate tensile stress = Pa [2]

(ii) the							
		,					
		v	Young moduli	us =			Pa
iii) the	maximum st	rain energy sto	ored in the fib	re before	it breaks.		
				a.			

			1638000000000000000000000000000000000000				
window.	The balls hit	oft ball, with e	the same sp	s and volu eed. Sugg	umes, ard	e throwr	J at a gl ball is m
window.	The balls hit	oft ball, with e	qual masses the same sp	s and volu eed. Sugg	umes, are	e throwr the hard	n at a gl
window.	The balls hit	oft ball, with e the window at Il to break the	qual masses the same sp	and volueed. Sugg	umes, are	e throwr	n at a gl
window.	The balls hit	oft ball, with e the window at Il to break the Internation	qual masses the same sp glass window onal Examination +974 55249797 / 552	and volueed. Sugg	umes, are	e throwr	n at a gl
window.	The balls hit	oft ball, with e the window at Il to break the Internation	iqual-masses the same sp glass window	and volueed. Sugg	umes, are	e throwr	n at a gl
window.	The balls hit	oft ball, with e the window at Il to break the Internation	qual masses the same sp glass window onal Examination +974 55249797 / 552	and volueed. Sugg	umes, are	e throwr	n at a gl
window.	The balls hit	oft ball, with e the window at Il to break the Internation	qual masses the same sp glass window onal Examination +974 55249797 / 552	and volueed. Sugg	umes, are	the hard	at a gl ball is m
window. likely tha	The balls hit in the soft ba	oft ball, with e the window at Ill to break the Internation	qual-masses the same sp glass window anal Examination +974 55249797 / 552 Frashed Sabangman	s and volueed. Sugg	jest why t	the hard	at a gl
window. likely tha	The balls hit in the soft ba	oft ball, with e the window at Ill to break the Internation	qual-masses the same sp glass window anal Examination +974 55249797 / 552 Frashed Sabangman	s and volueed. Sugg	jest why t	the hard	at a gl
window. likely tha	The balls hit in the soft ba	oft ball, with e the window at Il to break the Internation	qual-masses the same sp glass window anal Examination +974 55249797 / 552 Frashed Sabangman	s and volueed. Sugg	jest why t	the hard	at a gl
window. likely tha	The balls hit in the soft ba	oft ball, with entered the window at all to break the	qual masses the same sp glass window 1 1 onal Examination +974 55249797 / 552	s and volueed. Sugg	gest why t	the hard	at a gl
window. likely tha	The balls hit in the soft ba	oft ball, with enthe window at all to break the	qual masses the same sp glass window 1 1 onal Examination +974 55249797 / 552	s and volueed. Sugg	gest why t	the hard	at a gl
window. likely tha	The balls hit in the soft ba	oft ball, with e the window at Il to break the Internation	qual-masses the same sp glass window anal Examination 1974 55249797 / 552 trashed sahanginan	s and volueed. Sugg	gest why t	the hard	at a gl
window. likely tha	The balls hit in the soft ba	oft ball, with e the window at Il to break the Internation	qual-masses the same sp glass window onal Examination +974 55249797 / 552 tracked same grad	s and volueed. Sugg	gest why t	the hard	at a gl
window. likely tha	The balls hit in the soft ba	oft ball, with e the window at Il to break the Internation	qual-masses the same sp glass window anal Examination 1974 55249797 / 552 tracked same gman	s and volueed. Sugg	est why t	the hard	at a gl
window. likely tha	The balls hit in the soft ba	oft ball, with e the window at Il to break the Internation	qual-masses the same sp glass window onal Examination +974 55249797 / 552 tracked same grad	s and volueed. Sugg	est why t	the hard	at a gl
window. likely tha	The balls hit in the soft ba	oft ball, with e the window at Il to break the Internation	qual-masses the same sp glass window onal Examination +974 55249797 / 552 tracked same grad	s and volueed. Sugg	est why t	the hard	at a gl

2 7 A uniform wire has length *L* and area of cross-section *A*. The wire is fixed at one end so that it hangs vertically with a load attached to its free end, as shown in Fig. 4.1.

For Examiner's Use

Fig. 4.1

When the load of magnitude W is attached to the wire, it extends by an amount e. The elastic limit of the wire is not exceeded.

The material of the wire has resistivity ρ .

(a) (i)	Explain what is meant by extends <i>elastically</i> .	
		[2]
(ii)) Write down expressions, in terms of L, A, W, ρ and e for	
	1. the resistance <i>R</i> of the unstretched wire,	
	R =	[1]
	2. the Young modulus <i>E</i> of the wire.	
	E =	[1]

(b) A steel wire has resistance $0.44\,\Omega$. Steel has resistivity $9.2\times10^{-8}\,\Omega$ m. A load of 34 N hung from the end of the wire causes an extension of 7.7×10^{-4} m. Using your answers in (a)(ii), calculate the Young modulus E of steel.

$E = \dots Pa$	a	[၂
----------------	---	----

2 8 A sample of material in the form of a cylindrical rod has length *L* and uniform area of cross-section *A*. The rod undergoes an increasing tensile stress until it breaks. Fig. 4.1 shows the variation with stress of the strain in the rod.

(a) State whether the material of the rod is ductile, brittle or polymeric.

(b) Determine the Young modulus of the material of the rod.

Young modulus = Pa [2]

(c) A second cylindrical rod of the same material has a spherical bubble in it, as illustrated in Fig. 4.2.

Fig. 4.2

The rod has an area of cross-section of $3.2\,\Box\,10^{-6}\,\text{m}^2$ and is stretched by forces of magnitude $1.9\,\Box\,10^3\,\text{N}$.

By reference to Fig. 4.1, calculate the maximum area of cross-section of the bubble such that the rod does not break.

area = m^2 [3]

(d) A straight rod of the same material is bent as shown in Fig. 4.3.

Fig. 4.3

Suggest why a thin rod can bend more than a thick rod without breaking.

2 9 A spring hangs vertically from a point P, as shown in Fig. 4.1.

Fig. 4.1

A mass M is attached to the lower end of the spring. The reading x from the metre rule is taken, as shown in Fig. 4.1. Fig. 4.2 shows the relationship between x and M.

Fig. 4.2

(a)	Explain how the apparatus in elastic limit.	Fig. 4.1 may be used to determ	mine the load on the spring at the
			[2]
(b)	State and explain whether Fig	g. 4.2 suggests that the spring o	obeys Hooke's law.
			[2]

(c) Use Fig. 4.2 to determine the spring constant, in $N m^{-1}$, of the spring.

spring constant = Nm⁻¹ [3]

D	Define the Young modulus.	F
		Exan
••	[1]	
Α	A load F is suspended from a fixed point by a steel wire. The variation with extension x	.
O	of F for the wire is shown in Fig. 5.1.	
	6.0	
	5.0	Difference of the control of the con
	4.0	Anna anna
N	3.0	
	Constitution of the state of th	Service Control of the Control of th
	2.0 Mob: 4974 55373670 / 33787500 Equal: https://www.nammad@gmail.co	>171
	1.0	T
	0 0.10 0.20 0.30	
	x/mm	
	Fig. 5.1	
(i)	State two quantities when the	
(i)	State two quantities, other than the gradient of the graph in Fig. 5.1, that are required in order to determine the Young modulus of steel.	
	1. International Examinations Papers	
	Mob: +974 35249797 / 55258711 E-meiltrached sebe@gosil.com	
	[1]	
::\		
i)	Describe how the quantities you listed in (i) may be measured.	
	rot.	
	[2]	l

400

energy =	 J	[2]	

(c) A copper wire has the same original dimensions as the steel wire. The Young modulus for steel is $2.2 \times 10^{11} \, N \, m^{-2}$ and for copper is $1.1 \times 10^{11} \, N \, m^{-2}$.

On Fig. 5.1, sketch the variation with x of F for the copper wire for extensions up to 0.25 mm. The copper wire is not extended beyond its limit of proportionality. [2]

3 1(a) State what is meant by elastic potential energy.

.....[1]

(b) A spring is extended by applying a force. The variation with extension x of the force F is shown in Fig. 4.1 for the range of values of x from 20 cm to 40 cm.

Fig. 4.1

(I) ·	extensions.	Fig. 4.1 to	snow tha	t the spring	obeys Hooke's	law for this	range of
				r		*	
				, , ,			2
			9		*	•	ייייייייייייייייייייייייייייייייייייייי

(ii)	Use	Fig.	4.1	to	calculate
1/					00.00.00

1. the spring constant,

spring constant =	 Nm^{-1} [2]

2. the work done extending the spring from $x = 20 \,\mathrm{cm}$ to $x = 40 \,\mathrm{cm}$.

		Work done =		J [3]
(c)	A force is applied to the sp	ring in (b) to give an extension	of 50 cm.	e
	State how you would check	that the spring has not excee	ded its elastic limit.	
		- International Examinations Papers		
		Mob: +974 55249797 / 55258711 E-mail:rashed.sah@gps:tl.com		[11
	:			[Total: 9]

32 (a) State Hooke's la	aw.	e's l	Hooke	State	(a)	2	3
-------------------------	-----	-------	-------	-------	-----	---	---

......

(b) The variation with compression *x* of the force *F* acting on a spring is shown in Fig. 3.1.

Fig. 3.1

The spring is fixed to the closed end of a horizontal tube. A block is pushed into the tube so that the spring is compressed, as shown in Fig. 3.2.

Fig. 3.2 (not to scale)

The compression of the spring is 4.0 cm. The mass of the block is 0.025 kg.

(i) Calculate the spring constant of the spring.

spring constant = N m⁻¹ [2]

			*			
						[2]
/111X						
(iii)	The block is now rele original length. The bl					
	1. Calculate the kin	etic energy o	f the block as i	t leaves the e	end of the tube.	
				,		
		kin	etic energy = .			J [2]
		1874				
	2. Assume that the Determine the av	spring has r erage resisti	iegligible kineti ze force actino	c energy as	the block leave block as it move	es the tube.
	tube.	,		agamet are c	noon as it move	o along the
		LLA	<i>jaliibl</i> .	Ž		
		International	Examinations Paper	18		
			55249797 / 55258711 ed.seba@gmail.com			
		res	istive force =			N [3]
(iv)	Determine the efficier kinetic energy of the b		nsfer of elastic	potential ene	ergy from the s	pring to the
			efficiency =		************	[2]
						[Total: 12]
						נוטנמו. ובן

(ii) Show that the work done to compress the spring by 4.0 cm is 0.48 J.

© UCLES 2016 9702/23/O/N/16 **[Turn over**

33	(a)	State the principle of conservation of momentum.

(b) Two blocks, A and B, are on a horizontal frictionless surface. The blocks are joined together by a spring, as shown in Fig. 2.1.

Fig. 2.1

Block A has mass 4.0 kg and block B has mass 6.0 kg.

The variation of the tension F with the extension x of the spring is shown in Fig. 2.2.

Fig. 2.2

Th	e two blocks are held apart so that the spring has an extension of 8.0 cm.
(i)	Show that the elastic potential energy of the spring at an extension of 8.0 cm is 0.48 J.
	[2]
(ii)	The blocks are released from rest at the same instant. When the extension of the spring becomes zero, block A has speed $v_{\rm A}$ and block B has speed $v_{\rm B}$.
	For the instant when the extension of the spring becomes zero,
	1. use conservation of momentum to show that
	$\frac{\text{kinetic energy of block A}}{\text{kinetic energy of block B}} = 1.5$
	[3]
	2. use the information in (b)(i) and (b)(ii)1 to determine the kinetic energy of block A. It may be assumed that the spring has negligible kinetic energy and that air resistance
	is negligible.
	kingtin anarov of block A
	kinetic energy of block A =

(iii) The blocks are released at time t = 0.

On Fig. 2.3, sketch a graph to show how the momentum of block A varies with time t until the extension of the spring becomes zero. Numerical values of momentum and time are not required.

Fig. 2.3

[2]

[Total: 11]

34	hun	pring ig fro	g naving spring constant k hangs vertically from a fixed point. A load of weight L , wher om the spring, causes an extension e . The elastic limit of the spring is not exceeded.
	(a)	Sta	te
		(i)	what is meant by an elastic deformation,
			[2]
		(ii)	the relation between k , L and e .

Question 4 continues on page 10

(b) Some identical springs, each with spring constant k, are arranged as shown in Fig. 4.1.

For Examiner's Use

Fig. 4.1

The load on each of the arrangements is L.

For each arrangement in Fig. 4.1, complete the table by determining

- (i) the total extension in terms of e,
- (ii) the spring constant in terms of k.

35	A spring having spring constant <i>k</i> hangs vertically from a fixed point. A load of weight <i>L</i> , when hung from the spring, causes an extension <i>e</i> . The elastic limit of the spring is not exceeded.
	, 0

		and the spring is not exceed	cu.
(a)	Sta	te	
ė	(i)	what is meant by an elastic deformation,	
			••••
			[2]
	(ii)	the relation between k , L and e .	[~]
			[1]
			r.1

(b) Some identical springs, each with spring constant k, are arranged as shown in Fig. 4.1.

For Examiner's Use

Fig. 4.1

The load on each of the arrangements is L.

For each arrangement in Fig. 4.1, complete the table by determining

- (i) the total extension in terms of e,
- (ii) the spring constant in terms of k.

[5]

86	(a)	Explain what is meant by strain energy (elastic potential energy).	For
			Use
			,
		[2]	
	(b)	A spring that obeys Hooke's law has a spring constant k.	
		Show that the energy E stored in the spring when it has been extended elastically by an amount x is given by	г
		$E=\frac{1}{2}kx^2.$	* # *

[3]

(c) A light spring of unextended length 14.2cm is suspended vertically from a fixed point, as illustrated in Fig. 4.1.

For Examiner's Use

Fig. 4.1 Fig. 4.2 Fig. 4.3

A mass of weight 3.8 N is hung from the end of the spring, as shown in Fig. 4.2. The length of the spring is now 16.3 cm.

An additional force F then extends the spring so that its length becomes 17.8cm, as shown in Fig. 4.3.

The spring obeys Hooke's law and the elastic limit of the spring is not exceeded.

(i) Show that the spring constant of the spring is $1.8\,\mathrm{N\,cm^{-1}}$.

calculate the change in the gravitational potential energy of the mass on the spring,
change in energy = J [2]
show that the change in elastic potential energy of the spring is 0.077 J,
· ·
[1]
determine the work done by the force <i>F</i> .
· · · · · · · · · · · · · · · · · · ·
work done = J [1]

O

For

Fig. 5.1 shows the variation with force F of the extension x of a spring as the force is increased to F_3 and then decreased to zero.

Fig. 5.1

(a) State, with a reason, whether the spring is undergoing an elastic change.

CIASSIFIFD

(b) The extension of the spring is increased from x_1 to x_2 .

Mob. +974 55249707 / 55258712

Show that the work W done in extending the spring is given by

$$W = \frac{1}{2}k(x_2^2 - x_1^2),$$

where *k* is the spring constant.

(c) A trolley of mass 850 g is held between two fixed points by means of identical springs, as shown in Fig. 5.2.

Fig. 5.2

When the trolley is in equilibrium, the springs are each extended by $4.5\,\mathrm{cm}$. Each spring has a spring constant $16\,\mathrm{N}\,\mathrm{cm}^{-1}$.

The trolley is moved a distance of 1.5 cm along the direction of the springs. This causes the extension of one spring to be increased and the extension of the other spring to be decreased. The trolley is then released. The trolley accelerates and reaches its maximum speed at the equilibrium position.

Assuming that the springs obey Hooke's law, use the expression in **(b)** to determine the maximum speed of the trolley.

International Examinations Papers
Mob: +974 55249797 / 55258711
E-mail:rashed.saba@gmail.com

cnood			a-1	Γ <i>Α</i> 1

One end of a spring is fixed to a support. A mass is attached to the other end of the spring. The arrangement is shown in Fig. 3.1.

For Examiner's Use

Fig. 3.1

(a)	is meant by equilibrium. Explain, i	by reference	to the forces acting o	n the mass, wh	a
			r		
			******************************	***************************************	• • •
		*****************	***************************************		
		·	***************************************		2

(b) The mass is pulled down and then released at time t = 0. The mass oscillates up and down. The variation with t of the displacement of the mass d is shown in Fig. 3.2.

Fig. 3.2

Use Fig. 3.2 to state a time, one in each case, when

(i) the mass is at maximum speed,

(ii) the elastic potential energy stored in the spring is a maximum,

(iii) the mass is in equilibrium.

(c) The arrangement shown in Fig. 3.3 is used to determine the length $\it l$ of a spring when different masses $\it M$ are attached to the spring.

For Examiner's Use

Fig. 3.3

The variation with mass M of l is shown in Fig. 3.4.

Fig. 3.4

(i)	State and explain wh	ether the spring obeys Hooke'	s law.
			[2]
(ii)	Show that the force c	onstant of the spring is 26 N m	-1.
			•
			[2]
(iii)	A mass of 0.40kg is spring.	attached to the spring. Calcu	ulate the energy stored in the
		CLASSIFIED	
	NO CONTRACTOR OF THE PARTY OF T	International Examinations Papers Mob: +974 55249 97 259 17 E-mell:mehed.saba@gmail.com	J [3]

For Examiner's Use A spring is supported so that it hangs vertically, as shown in Fig. 4.1.

Fig. 4.1

Different masses are attached to the lower end of the spring. The extension x of the spring is measured for each mass M. The variation with x of M is shown in Fig. 4.2.

(a)	State and explain whether the spring obeys Hooke's law.	
(b)	State the form of energy stored in the spring due to the addition of the masses.	-
		[1]
(c)	Describe how to determine whether the extension of the spring is elastic.	
		•••••

(d) Calculate the work done on the spring as it is extended from $x = 40.0 \,\mathrm{mm}$ to $x = 160 \,\mathrm{mm}$.

[Total: 6]

(a)	Stat	e what is	s meant	by					
	(i)	work do	one,						
					 			[1	 []
	(ii)	elastic į	ootentia	l energy.					
								[1	
(b)				0 kg slides s shown in	nt line with	a constant	speed of (0.30 m s ⁻¹ along	a
	mas	block ss 0.40 k	_	.30 m s ⁻¹		W	spring	REARPANGE!	CLASSIFIED VA
								Mob: +974 55373670 / 33 E-mail:chymrc.muhammadd	3787500 ggmail.com

The block hits a spring and decelerates. The speed of the block becomes zero when the spring is compressed by $8.0\,\mathrm{cm}$.

Fig. 3.1

(i) Calculate the initial kinetic energy of the block.

kinetic energy = J [2]

(ii) The variation of the compression *x* of the spring with the force *F* applied to the spring is shown in Fig. 3.2.

Fig. 3.2

Use your answer in **(b)(i)** to determine the maximum force $F_{\rm MAX}$ exerted on the spring by the block. Explain your working.

$F_{\text{MAX}} =$	N	[3]
·MAX		[~]

(iii) Calculate the maximum deceleration of the block.

deceleration = ms^{-2} [1]

- (iv) State and explain whether the block is in equilibrium
 - 1. before it hits the spring,

2. when its speed becomes zero.

[2]

(c) The energy E stored in a spring is given by

$$E = \frac{1}{2}kx^2$$

where k is the spring constant of the spring and x is its compression.

The mass m of the block in **(b)** is now varied. The initial speed of the block remains constant and the spring continues to obey Hooke's law.

On Fig. 3.3, sketch the variation of the maximum compression x_0 of the spring with mass m.

Fig. 3.3

[2]

[Total: 12]

A spring hangs vertically from a fixed point and a mass of 94g is suspended from the spring, For stretching the spring as shown in Fig. 5.1. Examiner's Use mass 2.6 cm 94 g Mob: +974 55373870 / 33" Fig. 5.1 Fig. 5.2 Fig. 5.3 The mass is raised vertically so that the length of the spring is its unextended length. This is illustrated in Fig. 5.2. The mass is then released. The mass moves through a vertical distance of 2.6 cm before temporarily coming to rest. This position is illustrated in Fig. 5.3. (a) State which diagram, Fig. 5.1, Fig. 5.2 or Fig. 5.3, illustrates the position of the mass such that the mass has maximum gravitational potential energy, the spring has maximum strain energy.

Mob: +974 55229797 / 55258711

E-mail:rashed.saba@gmail.com

(b) Briefly describe the variation of the kinetic energy of the mass as the mass falls from its

highest position (Fig. 5.2) to its lowest position (Fig. 5.3).

(c)	The strain energy	E stored	in the s	pring is	given b	y the ex	pression
-----	-------------------	----------	----------	----------	---------	----------	----------

 $E = \frac{1}{2}kx^2$

For Examiner's Use

where k is the spring constant and x is the extension of the spring.

For the mass moving between the positions shown in Fig. 5.2 and Fig. 5.3,

(i) calculate the change in the gravitational potential energy of the mass,

change	=		J	[2]
--------	---	--	---	-----

(ii) determine the extension of the spring at which the strain energy is half its maximum value.

extension = cm [3]

(a)	With reference to the arrangement of atoms, distinguish between metals, polymers and amorphous solids.
	metals:
	polymers:
	amorphous solids:
	[3]

(b) On Fig. 3.1, sketch the variation with extension *x* of force *F* to distinguish between a metal and a polymer.

[2]

For Examiner's Use