www.mrc-papers.com

CLASSIF Most 1974 5258711 / 550575

International Examinations Papers

Mob: +974 55249797 / 55258711 E-mail:rashed.saba@gmail.com

Kirchhoff's laws: 10

TOPIC-First and second law, application and combination of resistor.

Fig. 5.1 shows a 12V power supply with negligible internal resistance connected to a uniform metal wire AB. The wire has length 1.00m and resistance 10Ω . Two resistors of resistance 4.0Ω and 2.0Ω are connected in series across the wire.

For Examiner's Use

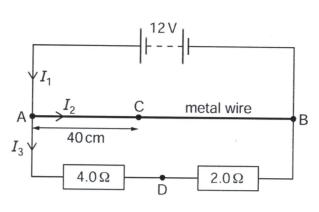


Fig. 5.1

Currents $I_{\rm 1},\,I_{\rm 2}$ and $I_{\rm 3}$ in the circuit are as shown in Fig. 5.1.

(a) (i) Use Kirchhoff's first law to state a relationship between I_1 , I_2 and I_3 .

(ii) Calculate I_1 .

(iii) Calculate the ratio x, where

$$x = \frac{\text{power in metal wire}}{\text{power in series resistors}}$$
.

$$x = \dots [3]$$

(b) Calculate the potential difference (p.d.) between the points C and D, as shown in Fig. 5.1. The distance AC is 40 cm and D is the point between the two series resistors.

0 2	(a)	Distinguish between the electromotive force (e.m.f.) of a cell and the potential difference	
		(p.d.) across a resistor	For Examiner's Use
		REARRANGED & CRARRANGED & CRARR	USE
	(b)	Fig. 7.1. is an electrical circuit containing two cells of e.m.f. E_1 and $E_{\bar{9}}^{\text{Mob: }+974}$ 55258711 / 55249797	
	(-)	19.7.11 IS an clostrical circuit containing two cells of e.m.i. \mathcal{L}_1 and \mathcal{L}_2 mail:rashed.saba@gmail.com	
		$A \xrightarrow{E_1} A \xrightarrow{R_1} D$	
		R_2	
		B R ₃ C	
		The cells are connected to resistors of resistance R_1 , R_2 and R_3 and the currents in the branches of the circuit are I_1 , I_2 and I_3 , as shown.	
		(i) Use Kirchhoff's first law to write down an expression relating I_1 , I_2 and I_3 .	
	,	(ii) Use Kirchhoff's second law to write down an expression relating	
	,		
		1. E_2 , R_3 , I_2 and I_3 in the loop XBCYX,	
		[1]	
		2. E_1 , E_2 , R_1 , R_2 , I_1 and I_2 in the loop AXYDA.	

0 3 A network of resistors, each of resistance *R*, is shown in Fig. 7.1.

For Examiner's Use

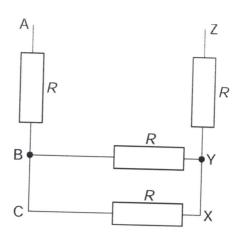
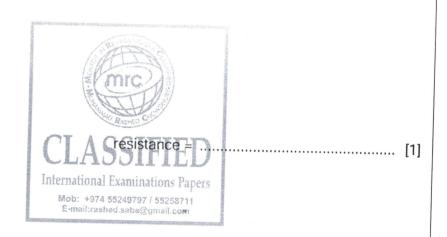



Fig. 7.1

- (a) Calculate the total resistance, in terms of R, between points
 - (i) A and C,

(ii) B and X,

(iii) A and Z.

(b) Two cells of e.m.f. E_1 and E_2 and negligible internal resistance are connected into the network in (a), as shown in Fig. 7.2.

For Examiner's Use

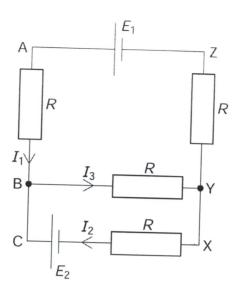


Fig. 7.2

The currents in the network are as indicated in Fig. 7.2.

Use Kirchhoff's laws to state the relation ro

(i) between currents I_1 , I_2 and I_3 ,

between F. P. L. and Utilette Sent Covernitions Review

(ii) between E_2 , R, I_2 and I_3 in the part of the part

(iii) between E_1 , E_2 , R, I_1 and I_2 in loop ABCXYZA.

A circuit used to measure the power transfer from a battery is shown in Fig. 4.1. The power is transferred to a variable resistor of resistance *R*.

For Examiner's Use

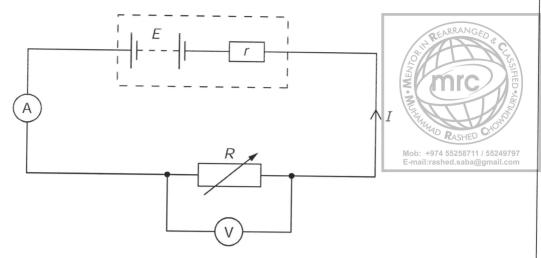


Fig. 4.1

The battery has an electromotive force (e.m.f.) E and an internal resistance r. There is a potential difference (p.d.) V across R. The current in the circuit is I.

(a)	By reference to the circuit shown in Fig. 4.1, distinguish between the definitions of e.m and p.d.				
		Rased A. C. C. H.			
		CLASSIFIED Three traditional Examinations Papers			
		Mob: +974 55249797 / 55258711 F-mail rashed, saha@gmail.com	[3]		
		B			

(b) Using Kirchhoff's second law, determine an expression for the current I in the circuit.

[1]

(c) The variation with current I of the p.d. V across R is shown in Fig. 4.2.

For Examiner's Use

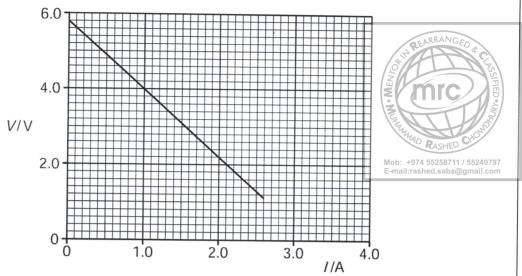


Fig. 4.2

Use Fig. 4.2 to determine

(i) the e.m.f. *E*,

(ii) the internal resistance r.

International Examinations Papers
Mob: +974 55249797 / 55258711
E-mail:rashed.saba@gmail.com

.... 22 [2]

(d) (i) Using data from Fig. 4.2, calculate the power transferred to R for a current of 1.6 A.

(ii) Use your answers from (c)(i) and (d)(i) to calculate the efficiency of the battery for a current of 1.6 A.

05 (a) A network of resistors, each of resistance R, is shown in Fig. 7.1.

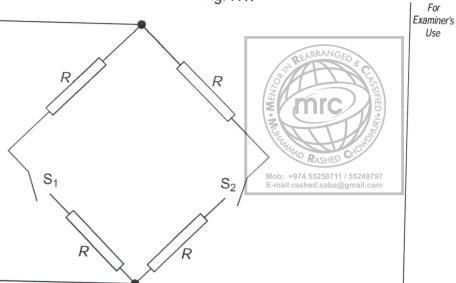


Fig. 7.1

Switches S₁ and S₂ may be 'open' or 'closed'.

Complete Fig. 7.2 by calculating the resistance, in terms of R, between points X and Yfor the switches in the positions shown.

switch S ₁	switch S ₂	resistance between points X and Y
open	open	V-CCLELED
open	closed _{ternat}	ional Examinations Papers
closed	Mob:	+974 55249797 / 55258711 I:rashed.saba@gmail.com

Fig. 7.2

[3]

For

Use

© UCLES 2009

(b) Two cells of e.m.f. E_1 and E_2 and negligible internal resistance are connected into a network of resistors, as shown in Fig. 7.3.

For Examiner's Use

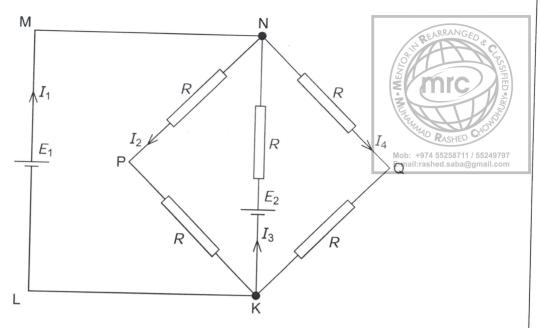


Fig. 7.3

The currents in the network are as indicated in Fig. 7.3.

Use Kirchhoff's laws to state the relation

(i)	between currents I_1 , I_2	T ₂ ,	Land LaSSIFIED
		· · ·	International Examinations Papers

.....[1]

(ii)	between E_1 ,	E ₂ ,	R,	and	I_3	
				Buss		

[4]

(iii) between
$$E_2$$
, R , I_3 and I_4 in loop NKQN.

[4]

06	<i>(</i>) 5	
00	(a) F	or a cell, explain the terms i) electromotive force (e.m.f.),
	(ii	EARRANGED STATE OF THE STATE OF
	(b) Th	ne circuit of Fig. 5.1 shows two batteries A and B and a resistor R connected in
	0.11	International Examinations Papers Mob: Fig. 5.1 yr respective terry A has an e.m.f. of 3.0V and an internal resistance of 0.10 Ω . Battery B has an e.f. of 12V and an internal resistance of 0.20 Ω . Resistor R has a resistance of 3.3 Ω .
	(i)	Apply Kirchhoff's second law to calculate the current in the circuit.
	(ii)	current = A [2] Calculate the power transformed by battery B.

For Examiner's Use

© UCLES 2011

(iii) Calculate the total energy lost per second in resistor R and the internal resistances.

For Examiner's Use

(c)	energy lost per second = The circuit of Fig. 5.1 may be used to store energy in battery answers in (b) support this statement.	A. Suggest how your E-mail:rashed.saba@gmail.com
		[1]

07 (a) (i) State Kirchhoff's second law. Examiner's (ii) Kirchhoff's second law is linked to the conservation of a certain quantity. State this quantity. (b) The circuit shown in Fig. 5.1 is used to compare potential differences; mail:rashed.saba@gmail.com

cell A 2.0 V 0.50Ω I 0.90 m X uniform resistance wire length 1.00 m International Examinations Papers cell B Mob: +974 55249797 / 55258711 E-mail:rashed.saba@gmail.com

Fig. 5.1

The uniform resistance wire XY has length 1.00m and resistance 4.0 Ω . Cell A has e.m.f. 2.0V and internal resistance 0.50 Ω . The current through cell A is I. Cell B has e.m.f. E and internal resistance r.

The current through cell B is made zero when the movable connection J is adjusted so that the length of $\breve{X}J$ is 0.90 m. The variable resistor R has resistance 2.5 Ω .

Apply Kirchhoff's second law to the circuit CXYDC to determine the current I.

 $I = \dots A [2]$

For

Use

For Examiner's Use

(ii) Calculate the potential difference across the length of wire XJ.

potential difference = $\frac{1}{1}$ $\frac{1}{1}$

International Examinations Papers
Mob: +974 55249797 / 55258711
E-mail:rashed.saba@gmail.com

© UCLES 2012

A battery of electromotive force (e.m.f.) 12V and internal resistance *r* is connected in series to two resistors, each of constant resistance *X*, as shown in Fig. 5.1.

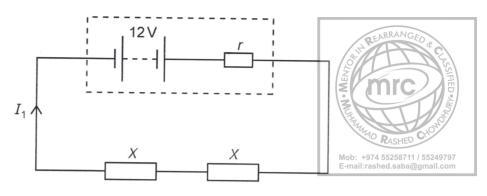
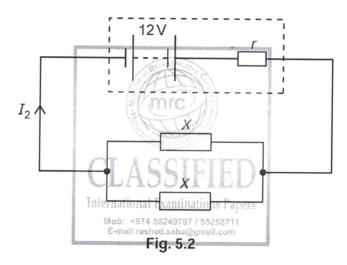



Fig. 5.1

The current I_1 supplied by the battery is 1.2A.

The same battery is now connected to the same two resistors in parallel, as shown in Fig. 5.2.

The current I_2 supplied by the battery is 3.0 A.

(a) (i) Show that the combined resistance of the two resistors, each of resistance X, is four times greater in Fig. 5.1 than in Fig. 5.2.

		[2]
(ii)	Explain why I_2 is not four times greater than I_1 .	
		••••
		.[2]

	(111)	Usi	ng Kirchhoff's se	cond law, state e	quations, in te	rms of e.m	.f., current, λ	and <i>r</i> , for	1
		1.	the circuit of Fig	g. 5.1,					,
							REARRAN	GED &	ļ
		2.	the circuit of Fig	g. 5.2.			mrg	SSIFIED . WITH	
	(iv)	Use	e the equations ir	n (iii) to calculate	the resistance	Х.	Mob: +974 552587 E-mail:rashed.saba	1 / 55249797	[2]
				S. A.	X =			0	[1]
(b)	Calc	ulate		med in one resis		ce X in Fig.	5.1		[.]
			power transfor	med in one resis Mob: +974 5524 E-mail:rashad.sa)797 / 55258711	e X in Fig.	5.2		
					ratio =	•••••			[2]
(c)	The	resis	tors in Fig. 5.1 a	nd Fig. 5.2 are re	placed by iden	tical 12V fi	ilament lamp	S.	
	Expla resis	ain w tance	why the resistance of each lamp w	e of each lamp, when connected in	when connecten parallel.	ed in serie	s, is not the	same as t	he
						•••••			
		•••••				••••••			[2]