www.mrc-papers.com

International Examinations Papers

Mob: +974 55249797 / 55258711 E-mail:rashed.saba@gmail.com

Pure Mathematics-1 TOPIC- Differentiation APPLICATION

The length, x metres, of a Green Anaconda snake which is t years old is given approximately by the formula

$$x = 0.7 \sqrt{(2t-1)}$$
,

where $1 \le t \le 10$. Using this formula, find

- (i) $\frac{\mathrm{d}x}{\mathrm{d}t}$,
- (ii) the rate of growth of a Green Anaconda snake which is 5 years old.

Q 2 The point P(x, y) is moving along the curve $y = x^2 - \frac{10}{3}x^{\frac{3}{2}} + 5x$ in such a way that the rate of change of y is constant. Find the values of x at the points at which the rate of change of x is equal to half the rate of change of y.

international Evanuations Papers

Mob. +874 55373678 / 53787598
E-mail:chymrc.muhammad@gmail.com

- A solid rectangular block has a square base of side x cm. The height of the block is h cm and the total surface area of the block is 96 cm^2 . J-10-12-8
 - (i) Express h in terms of x and show that the volume, $V ext{cm}^3$, of the block is given by

$$V = 24x - \frac{1}{2}x^3.$$

[3]

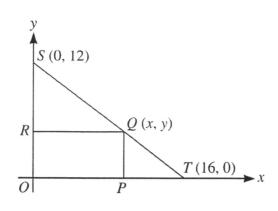
25

Given that x can vary,

- (ii) find the stationary value of V,
- (iii) determine whether this stationary value is a maximum or a minimum

[3] [2]

04



N-13-12-6

In the diagram, S is the point (0, 12) and T is the point (16, 0). The point Q lies on ST, between S and T, and has coordinates (x, y). The points P and R lie on the x-axis and y-axis respectively and OPQR is a rectangle.

(i) Show that the area, A, of the rectangle OPQR is given by $A = 12x - \frac{3}{4}x^2$.

[3]

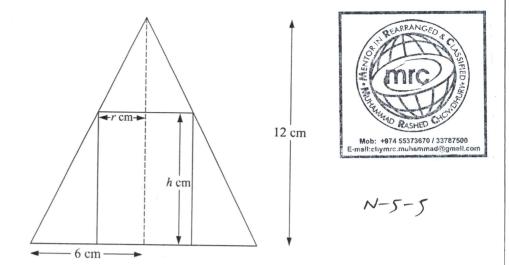
(ii) Given that x can vary, find the stationary value of A and determine its nature.

[4]

International Examinations Papers

* Mob: 4974 553736767 33787500

5



The diagram shows the cross-section of a hollow cone and a circular cylinder. The cone has radius 6 cm and height 12 cm, and the cylinder has radius r cm and height h cm. The cylinder just fits inside the cone with all of its upper edge touching the surface of the cone.

(i) Express h in terms of r and hence show that the volume, $V \text{cm}^3$, of the cylinder is given by

$$V = 12\pi r^2 - 2\pi r^3. ag{3}$$

(ii) Given that r varies, find the stationary value of V.

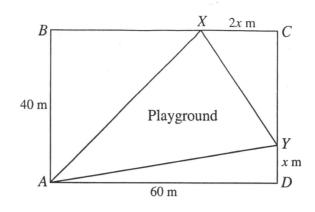
[4]

International Examinations Supers

Mob: +874 55373676 / 33787500

E-mail:chymro.muhammad@gmail.com

06



1-12-12-3

The diagram shows a plan for a rectangular park ABCD, in which AB = 40 m and AD = 60 m. Points X and Y lie on BC and CD respectively and AX, XY and YA are paths that surround a triangular playground. The length of DY is x m and the length of XC is 2x m.

(i) Show that the area, $A \text{ m}^2$, of the playground is given by

$$A = x^2 - 30x + 1200.$$
 [2]

(ii) Given that x can vary, find the minimum area of the playground.

[3]

International Examinations Papers

Meb: ±974 58373670 / 33787600 E-mail:chymro.muhammad@gmail.com

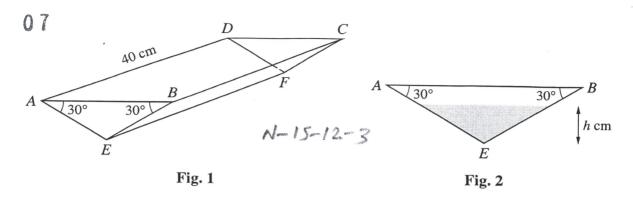


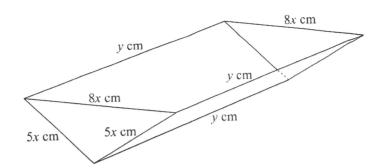
Fig. 1 shows an open tank in the shape of a triangular prism. The vertical ends ABE and DCF are identical isosceles triangles. Angle ABE = angle BAE = 30°. The length of AD is 40 cm. The tank is fixed in position with the open top ABCD horizontal. Water is poured into the tank at a constant rate of $200 \, \text{cm}^3 \, \text{s}^{-1}$. The depth of water, t seconds after filling starts, is $h \, \text{cm}$ (see Fig. 2).

- (i) Show that, when the depth of water in the tank is h cm, the volume, $V \text{ cm}^3$, of water in the tank is given by $V = (40\sqrt{3})h^2$.
- (ii) Find the rate at which h is increasing when h = 5.

[3]

Web: 1974 55373678 / 33767509 E-mail chymro muhammaithamat com

08



The diagram shows an open container constructed out of $200 \,\mathrm{cm}^2$ of cardboard. The two vertical end pieces are isosceles triangles with sides $5x \,\mathrm{cm}$, $5x \,\mathrm{cm}$ and $8x \,\mathrm{cm}$, and the two side pieces are rectangles of length $y \,\mathrm{cm}$ and width $5x \,\mathrm{cm}$, as shown. The open top is a horizontal rectangle.

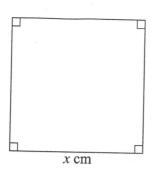
(i) Show that
$$y = \frac{200 - 24x^2}{10x}$$
. [3]

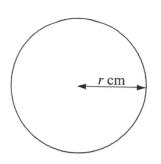
(ii) Show that the volume, $V \text{cm}^3$, of the container is given by $V = 240x - 28.8x^3$. [2]

Given that x can vary,

- (iii) find the value of x for which V has a stationary value, [3]
- (iv) determine whether it is a maximum or a minimum stationary value. [2]

09



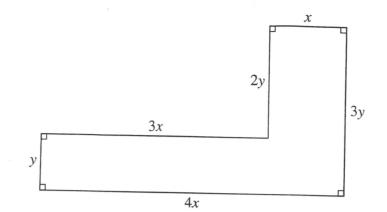


A wire, 80 cm long, is cut into two pieces. One piece is bent to form a square of side xcm and the other piece is bent to form a circle of radius rcm (see diagram). The total area of the square and the circle is Acm².

(i) Show that
$$A = \frac{(\pi + 4)x^2 - 160x + 1600}{\pi}$$
. [4]

(ii) Given that x and r can vary, find the value of x for which A has a stationary value. [4]

10



The diagram shows the dimensions in metres of an L-shaped garden. The perimeter of the garden is $\sqrt{-1/-7}$

(i) Find an expression for y in terms of x.

[1]

(ii) Given that the area of the garden is $A \text{ m}^2$, show that $A = 48x - 8x^2$.

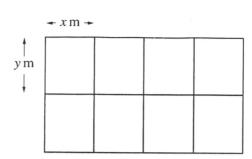
[2]

(iii) Given that x can vary, find the maximum area of the garden, showing that this is a maximum value rather than a minimum value.

International Examinations Papers
Nob: +974 55373670 / 33787809

11

1



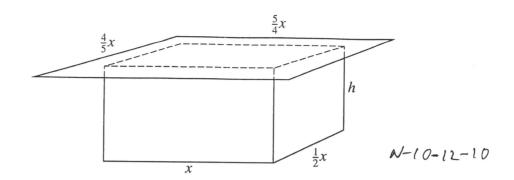
A farmer divides a rectangular piece of land into 8 equal-sized rectangular sheep pens as shown in the diagram. Each sheep pen measures x m by y m and is fully enclosed by metal fencing. The farmer uses 480 m of fencing.

(i) Show that the total area of land used for the sheep pens, $A \,\mathrm{m}^2$, is given by

$$A = 384x - 9.6x^2. ag{3}$$

(ii) Given that x and y can vary, find the dimensions of each sheep pen for which the value of A is a maximum. (There is no need to verify that the value of A is a maximum.) [3]

12



The diagram shows an open rectangular tank of height h metres covered with a lid. The base of the tank has sides of length x metres and $\frac{1}{2}x$ metres and the lid is a rectangle with sides of length $\frac{5}{4}x$ metres and $\frac{4}{5}x$ metres. When full the tank holds $4 \, \text{m}^3$ of water. The material from which the tank is made is of negligible thickness. The external surface area of the tank together with the area of the top of the lid is $A \, \text{m}^2$.

- (i) Express h in terms of x and hence show that $A = \frac{3}{2}x^2 + \frac{24}{x}$. [5]
- (ii) Given that x can vary, find the value of x for which A is a minimum, showing clearly that A is a minimum and not a maximum.

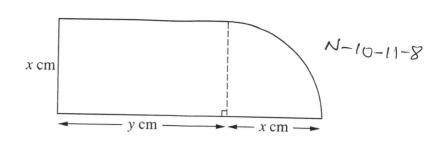
 [5]

International Examinations Papers

Fight +974 55373670 / 33727300

E-mail:chymrc.muhammad@gmail.com

13



The diagram shows a metal plate consisting of a rectangle with sides x cm and y cm and a quarter-circle of radius x cm. The perimeter of the plate is 60 cm.

(i) Express y in terms of x.

[2]

(ii) Show that the area of the plate, $A \text{ cm}^2$, is given by $A = 30x - x^2$.

[2]

Given that x can vary,

(iii) find the value of x at which A is stationary,

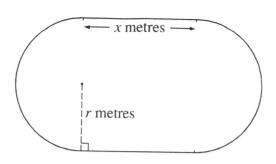
[2]

(iv) find this stationary value of A, and determine whether it is a maximum or a minimum value. [2]

Telegradienal Evandesking Danse

Mobil +974 55373670 / 33767500 E-mail: chymre.muhammad/formail.com

14



The inside lane of a school running track consists of two straight sections each of length x metres, and two semicircular sections each of radius R metres, as shown in the diagram. The straight sections are perpendicular to the diameters of the semicircular sections. The perimeter of the inside lane is 400 metres.

- (i) Show that the area, $A \text{ m}^2$, of the region enclosed by the inside lane is given by $A = 400 \text{R} \pi \text{R}^2$.
- (ii) Given that x and R can vary, show that, when A has a stationary value, there are no straight sections in the track. Determine whether the stationary value is a maximum or a minimum. [5]

