www.mrc-papers.com

CLASSIFIED

International Examinations Papers

Mob: +974 55249797 / 55258711 E-mail:rashed.saba@gmail.com

Dynamics-explaining motion: 3

TOPIC- SI units, different forces, Newton's law, moving through fluids

A unit is often expressed with a prefix. For example, the gram may be written with the prefix 'kilo' as the kilogram. The prefix represents a power-of-ten. In this case, the power-of-ten is 10³.

Complete Fig. 1.1 to show each prefix with its symbol and power-of-ten.

prefix	symbol	power-of-ten	
kilo	k	10 ³	
nano	n		
centi		10-2	
	М	10 ⁶	
	T	10 ¹²	

[4]

- 0 2 Make estimates of the following quantities.
 - (a) the speed of sound in air

- speed = [1]
- (b) the density of air at room temperature and pressure
 - density = [1]

- (c) the mass of a protractor
- (d) the volume, in cm³, of the head of an adult person

E-mail:rashed.st-bag/gmail.com

CLAS Syolume = 1.3.

International Examinations Papers

Mob: +974 55249797 | \$5258711

For Examiner's Use

0 3 (a)	Th	e current in a wire is I.	Charge <i>Q</i> pass	es one point ir	n the wire in tin	ne t. State
	(i)	the relation between	I, Q and t,			
	(ii)	which of the quantitie			es.	[1]
(b)	alo	e current in the wire is ng the wire. There are a wire having a cross-	n of these elec	s, each with c trons per unit	harge <i>q</i> , that n volume.	
			I = nS	qv ^k ,		
	wh	ere k is a constant.	/62	ENCO)		
	(i)	State the units of <i>I</i> , <i>n</i> ,	S, q and vin to	erms of the ba	se units.	
		<i>I</i>				
		n	CLAS	SITIED		
		q	IIIIVIIIIIIIIIIIIIIIIIIIIIIIIIII	iminauons Papers 19797 / 25232311 sabsélunes som		
		<i>v</i>				[3]
	(ii)	By considering the ho	mogeneity of th	ne equation, d	etermine the va	alue of <i>k</i> .
				,		
					k =	[2]

For Examiner's Use

0%					
04	(a)	Two	o of the SI base quanti	ties are mass and time. State th	ree other SI base quantities.
		1		······································	
		2			
		3			
					[3]
	(b)	A s acti	phere of radius r is mong on the sphere is given	oving at speed <i>v</i> through air of d ven by the expression	lensity $ ho$. The resistive force F
				$F = Br^2 \rho v^k$	
		whe	ere <i>B</i> and <i>k</i> are consta	nts without units.	
		(i)	State the SI base un	its of F , $ ho$ and v .	
			F		
			0		
			ρ		
			<i>V</i>	Rasteo	[3]
		(ii)	Use base units to det	ermine the value of k. E.	
				International Examinations Papers	
				Mob: +974 55249797 / 55258711 E-meil:reshed.seba@gmail.com	
				k -	(2)

Answer all	the o	questions	in	the	spaces	provided
------------	-------	-----------	----	-----	--------	----------

			Answer all the questions in the spaces provided.	
05	(a)	(i)	Define <i>pressure</i> .	
				[1]
		/::\	Chourthat the CI have seen at 1 2	[1
		(ii)	Show that the SI base units of pressure are kgm ⁻¹ s ⁻² .	
				[1]
	(b)	Gas gas	s flows through the narrow end (nozzle) of a pipe. Under certain conditions, the mass that flows through the nozzle in a short time t is given by	ss <i>m</i> of
			$\frac{m}{t} = kC\sqrt{\rho P}$	
		whe	Fre k is a constant with no units, C is a quantity that depends on the nozzle size, ρ is the density of the gas arriving at the nozzle, P is the pressure of the gas arriving at the nozzle.	
		Dete	ermine the base units of C.	
			CLASSIFIED	
			· International Examinations Papers	
			Mob. +974 85248797 / 85228721	

oase units	 [3]	

[Total: 5]

3

For Examiner's Use

- **0** 6 Make reasonable estimates of the following quantities.
 - (a) the frequency of an audible sound wave

frequency = Hz [1]

(b) the wavelength, in nm, of ultraviolet radiation

wavelength = nm [1]

(c) the mass of a plastic 30 cm ruler

mass = g [1]

(d) the density of air at atmospheric pressure

density = kg m^{-3} [1]

For Examiner's Use

(a) Two of the SI base quantities and their units are mass (kg) and length (m).
Name three other SI base quantities and their units.

(b) The pressure p due to a liquid of density ρ is related to the depth h by the expression $p = \rho g h,$

where g is the acceleration of free fall.

Use this expression to determine the derived units of pressure. Explain your working.

[5]

Answer all the questions in the spaces provided	Answer a	I the	questions	in the	spaces	provided
---	----------	-------	-----------	--------	--------	----------

The intensity of a progressive wave is defined as the average power transmitted through a 08 surface per unit area.

Show that the SI base units of intensity are kg s⁻³.

[2]

The intensity I of a sound wave is related to the amplitude x_0 of the wave by (b) (i)

 $I = K\rho c f^2 x_0^2$

where ρ is the density of the medium through which the sound is passing,

c is the speed of the sound wave,

f is the frequency of the sound wave

and K is a constant.

International Examinations Papers Show that *K* has no units. Mob. *874 55249757 / 55252711

E-meh rashed saluz-Carnali su

(ii) Calculate the intensity, in pW m⁻², of a sound wave where

K = 20, ρ = 1.2 in SI base units, c = 330 in SI base units, f = 260 in SI base units and x_0 = 0.24 nm.

0 9 Determine the SI base units of K.

SI	base units o	f K	10017	[2]	
				L1	

(ii) Data in SI units for the oscillations of X are shown in Fig. 1.2.

quantity	value	uncertainty
T	0.45	± 2.0%
Į.	0.892	± 0.2%
М	0.20681rc	± 0.1%
К	1.48 * 105	± 1.5%

Calculate E and its actual uncertainty. unations Papers
Mab: +874 55249797 (55258711
E-mail respect suba@gmapLoom

E=	=		±		kg m ⁻¹	s^{-2}	[4]
----	---	--	---	--	--------------------	----------	-----

(ii) the Young modulus.

 \uparrow The time T for a satellite to orbit the Earth is given by

$$T = \sqrt{\left(\frac{KR^3}{M}\right)}$$

For Examiner's Use

where R is the distance of the satellite from the centre of the Earth, M is the mass of the Earth, and K is a constant.

(a) Determine the SI base units of K.

SI base units of K[2]

(b) Data for a particular satellite are given in Fig. 2.1.

quantit		measurement uncertainty
Τ		$8.64 \times 10^4 \text{s}$ ± 0.5%
R		4.23 × 10 m ± 1%
M		6.0 × 10 ²⁴ kg ± 2%
	V-mio	LADIFIED

International Examinations Papers

Calculate K and its actual uncertainty in SI units;58741

K	=	' ±	SI	units	[4]

12 (a) State the SI base units of force.

......[1

(b) Two wires each of length l are placed parallel to each other a distance x apart, as shown in Fig. 1.1.

Fig. 1.1

Each wire carries a current I. The currents give rise to a force F on each wire given by

where K is a constant.

(i) Determine the SI base units of h

units of *K*[2]

(ii) On Fig. 1.2, sketch the variation with x of F. The quantities I and l remain constant.

Fig. 1.2

[2]

(iii) The current I in both of the wires is varied.

On Fig. 1.3, sketch the variation with I of F. The quantities x and l remain constant.

For Examiner's Use

Fig. 1.3

[1]

www.mrc-papers.com

CLASSIFIED

International Examinations Papers

Mob: +974 55249797 / 55258711 E-mail:rashed.saba@gmail.com

Dynamics-explaining motion: 3

TOPIC- SI units, different forces, Newton's law, moving through fluids

Copyright@MRC®: (9702/02 -P2) - 2010-2017

+97455258711

rashed.saba@gmail.com

A helicopter has a cable hanging from it towards the sea below, as shown in Fig. 3.1.

For Examiner's Use

Fig. 3.1

A man of mass 80 kg rescues a child of mass 50.5 kg. The two are attached to the cable and are lifted from the sea to the helicopter. The lifting process consists of an initial uniform acceleration followed by a period of constant velocity and then completed by a final uniform deceleration.

(a) Calculate the combined weight of the man and child.

N [1

- odos a manang. san
 - (i) the initial acceleration of $0.570 \,\mathrm{m\,s^{-2}}$,

tension = N [2]

(ii) the period of constant velocity of $2.00 \,\mathrm{m\,s^{-1}}$.

tension = N [1]

For Examiner's Use

deceleration =
$$ms^{-2}$$
 [2]

- (d) (i) Calculate the time over which the man and child are
 - 1. moving with uniform acceleration,
 - time = s [1]

time = s [1]

(ii) The time over which the man and child are moving with constant velocity is 20 s. On Fig. 3.2, sketch a graph to show the variation with time of the velocity of the man and child for the complete lifting process.

Fig. 3.2

[2]

2 A sky-diver jumps from a high-altitude balloon.	
---	--

For
Examiner's
Use

(a) Explain briefly why the acceleration of the sky-diver

(i) decreases with time,

.....[2

(ii) is 9.8 m s⁻² at the start of the jump.

(b) The variation with time t of the vertical speed v of the sky-diver is shown in Fig. 2.1.

Fig. 2.1

	t =	6.0s.	For Examiner's Use
		acceleration = m s ⁻² [3]	
(c)	The	e sky-diver and his equipment have a total mass of 90 kg.	
	(i)	Calculate, for the sky-diver and his equipment,	
		1. the total weight,	
		nuclas to the second se	
		weight = N [1]	
		2. the accelerating force at time $t = 6.0$ s.	
		force = N [1]	
	(ii)	Use your answers in (i) to determine the total resistive force acting on the sky-diver at time $t = 6.0$ s.	
		force = N [1]	