www.mrc-papers.com

Momentum: 6

TOPIC- Linear momentum, Collisions in two dimensions (elastic and inelastic), momentum conservation

A girl stands at the top of a cliff and throws a ball vertically upwards with a speed of 12 m s⁻¹, as illustrated in Fig. 3.1.

For Examiner's Use

Fig. 3.1

At the time that the girl throws the ball, her hand is a height *h* above the horizontal ground at the base of the cliff.

The variation with time t of the speed v of the ball is shown in Fig. 3.2.

Fig. 3.2

Speeds in the upward direction are shown as being positive. Speeds in the downward direction are negative.

For Examiner's Use

(a) State the feature of Fig. 3.2 that shows that the acceleration is constant.

......[1]

- **(b)** Use Fig. 3.2 to determine the time at which the ball
 - (i) reaches maximum height,

time = s

(ii) hits the ground at the base of the cliff.

time = s

(c) Determine the maximum height above the base of the cliff to which the ball rises.

m [3]

(d) The ball has mass 250 g. Calculate the magnitude of the change in momentum of the ball between the time that it leaves the girls hand to time $t = 4.0 \, \text{s}$.

change = Ns [3]

(e)	(i)	State the principle of conservation of momentum.			
		[2]			
	(ii)	Comment on your answer to (d) by reference to this principle.			
		[2]			

2	(a)	Sta	te Newton's second law.
			[1]
	(b)	ball	all of mass 65g hits a wall with a velocity of 5.2 m s ⁻¹ perpendicular to the wall. The rebounds perpendicularly from the wall with a speed of 3.7 m s ⁻¹ . The contact time he ball with the wall is 7.5 ms.
		Cal	culate, for the ball hitting the wall,
		(i)	the change in momentum, Mob: +874 55373870 / 33787500 E-mall:chymrc.muhammad@gmail.com
			change in momentum = Ns [2]
		(ii)	the magnitude of the average force.
	(c)	(i)	For the collision in (b) between the ball and the wall, state how the following apply: 1. Newton's third law, Mos: +974-55249787 / 5525711 E-mail: rashed.aebit@gmail.com
			2. the law of conservation of momentum.
	((ii)	State, with a reason, whether the collision is elastic or inelastic.
			[1]

A small ball is thrown horizontally with a speed of 4.0 m s⁻¹. It falls through a vertical height of 1.96 m before bouncing off a horizontal plate, as illustrated in Fig. 3.1.

For Examiner's Use

Fig. 3.1

Air resistance is negligible.

- (a) For the ball, as it hits the horizontal plate,
 - (i) state the magnitude of the horizontal component of its velocity,

horizontal velocity =
$$ms^{-1}$$
 [1]

(ii) show that the vertical component of the velocity is $6.2 \,\mathrm{m \, s^{-1}}$.

[1]

(b)	The components of the velocity in (a) are both vectors.
	Complete Fig. 3.2 to draw a vector diagram, to scale, to determine the velocity of the ball as it hits the horizontal plate.
	
	Fig. 3.2
	velocity =ms ⁻¹ at° to the vertical
	[3]
(c)	After bouncing on the plate, the ball rises to a vertical height of 0.98 m.
	(i) Calculate the vertical component of the velocity of the ball as it leaves the plate.
	vertical velocity = ms ⁻¹ [2]

(ii)	Th	e ball of mass 34g is in contact wi	th the plat	e for a tin	ne of 0.12s.		
	Us on	Use your answer in (c)(i) and the data in (a)(ii) to calculate, for the ball as it bounces on the plate,					
	1.	the change in momentum,					
	2.	the magnitude of the average for momentum change.	ce exerte	d by the p	plate on the bal	I due to this	
			force =			N [2]	
		£ .					
						e e	
			. ,				

(a)	State the principle of cons	ervation of momentum.	
			······································
o)	A ball X and a ball Y are shown in Fig. 4.1.	travelling along the same sti	raight line in the same direction,
	X	Y • • • • • • • • • • • • • • • • • • •	GEARRANGED & C
	400 g 0.65 m s ⁻¹	600 g 0.45 m s ⁻¹	mrc
		Fig. 4.1	
		horizontal velocity 0.65 m s ⁻¹ . horizontal velocity 0.45 m s ⁻¹ .	Mob: +974 55373670 / 33787500 E-mail:chymrc.muhammad@gmail.com
	Ball X catches up and collic and Y has horizontal veloc	les with ball Y. After the collision ty v, as shown in Fig. 4.2.	n, X has horizontal velocity 0.41 m
		X	Y
	*	400 g	0.41 m s ⁻¹ 600 g
	Calculate	CLASSIFIED	
	(i) the total initial momen	International Examinations Papers tum of the two balls 65253711 E-mail.rashed.s-shadomail.com	
	,		,
			Ns
	(ii) the velocity v,		
,	in the velocity v,		
		V =	ms ⁻¹

(iii) the total initial kinetic energy of the two balls.

		kinetic energy =	J [3]
(c)	Explain how you would ch	eck whether the collision is ela	stic.
			[1]
(d)	Use Newton's third law to equal and opposite to the		on, the change in momentum of X is
		Teller Const	
		(Mic)	
		The state of the s	[2]
		CLASSIFIED	F—1
		International Examinations Papers	
		Mob: +974 \$5249797 i \$5258711 E-meltrætied sabeldgonali.com	

05	Francium-208 is radioactive and emits α -particles with a kinetic energy of $1.07\times10^{-12}J$ to form nuclei of astatine, as illustrated in Fig. 3.1.	For Examiner's Use
	francium nucleus astatine nucleus	
	α - particle	
	Fig. 3.1	
	(a) State the nature of an α-particle.	,
	(b) Show that the initial speed of an approximately 1.8×10 ⁷ m s ⁻¹ .	
	International Examinations Papers Mob. +974 53248707 / 582/5744 E-mail rached, salad Constitution	-
	[2]	*
	(c) (i) State the principle of conservation of linear momentum.	

	(ii)	The Francthe astatir	cium-208 nuc ne nucleus im	leus is stationar mediately after t	ry before the the decay.	e decay. Es	timate the spe	ed of
					i i	*		
						16		
				•	,			
					speed = .		ms	s ⁻¹ [3]
(d)				lecay of the fra				tatine
	Sug	gest an ex	planation for t	his observation.				
	Ū							
		••••••		/6038ANG	·····		•••••	•••••
				277070	773		•••••	

Mob: +974 55249797 / 55258711 E-molicables seba@gmeil.com

A ball B of mass 1.2kg travelling at constant velocity collides head-on with a stationary ball S of mass 3.6kg, as shown in Fig. 2.1.

For Examiner's Use

Fig. 2.1

Frictional forces are negligible.

The variation with time t of the velocity v of ball B before, during and after colliding with ball S is shown in Fig. 2.2.

Fig. 2.2

(a)	State the significance of positive and negative values for v in Fig. 2.2.			
	[1]			

use Fig. 2.2 to determine, for ball B during the collision with ball S,	r

(i) the change in momentum of ball B,

(b)

For Examiner's Use

(ii) the magnitude of the force acting on ball B.

N [3]

(c) Calculate the speed of ball Stafter the collision

Mob: +974 55249797 / 55258711 E-mail:rashed.saba@gmail.com

(d) Using your answer in (c) and information from Fig. 2.2, deduce quantitatively whether the collision is elastic or inelastic.

4	
EL	7//
10 2	H

(a) State Newton's second law of motion.

[41]

(b) A constant resultant force F acts on an object A. The variation with time t of the velocity v for the motion of A is shown in Fig. 2.1.

Fig. 2.1

The mass of A is 840g.

Calculate, for the time t = 0 to t = 4.0 s,

(i) the change in momentum of A,

change in momentum =kg m s⁻¹ [2]

(ii) the force F.

F =N [1]

(c) The force F is removed at $t = 4.0 \, \text{s}$. Object A continues at constant velocity before colliding with an object B, as illustrated in Fig. 2.2.

Fig. 2.2

Object B is initially at rest. The mass of B is 730 g. The objects A and B join together and have a velocity of $4.7\,\mathrm{m\,s^{-1}}$.

(i) By calculation, show that the changes in momentum of A and of B during the collision are equal and opposite.

/::\	Evolein have the agree			[2]
(ii)	explain now the answ	ers obtained in (i) support Nev	vton's third law.	
		International Examinations Papers Mob: #874 55249797 tions 57711 E-mail ranged scha-200981 core		···
				[2]
(iii)	By reference to the sp	eeds of A and B, explain wheth	ner the collision is elastic.	
				[1]
				[Total: 9]

8 ((a)	(i)	Define force.
			[1]
		(ii)	State Newton's third law of motion.
			[3]
	(b)	Two	spheres approach one another along a line joining their centres, as illustrated in 3.1.
		i ig.	J.1.
			sphere (sphere B)
			(mrc)
			Fig. 3.1
		Whe	en they collide, the average force acting on sphere A is F_A and the average force ago on sphere B is F_B . International Examinations Papers
			mob: +974 55249797 / 55258711 E-mail:rashed.saba@gmail.com forces act for time t _A on sphere A and time t _B on sphere B.
		(i)	State the relationship between
			1. F_A and F_B ,
			[1]
			2. t_A and t_B .
			[1]
		(ii)	Use your answers in (i) to show that the change in momentum of sphere A is equal
		\/	in magnitude and opposite in direction to the change in momentum of sphere B.

The momentum of sphere B before the collision is also shown on Fig. 3.2.

Complete Fig. 3.2 to show the variation with time of the momentum of sphere B during and after the collision with sphere A. [3]

9	(a)	(i)	State the principle of conservation of momentum.
			[2]
		(ii)	State the difference between an elastic and an inelastic collision.
			[1]
	(b)	An c shov	object A of mass 4.2 kg and horizontal velocity 3.6 m s ⁻¹ moves towards object B as vn in Fig. 3.1.
			$\frac{A}{3.6 \mathrm{m s^{-1}}}$ 3.6 m s ⁻¹ 1.2 m s ⁻¹
		4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
			Fig. 3.1
	(objec	
		he o	objects collide and then both move to the right, as shown in Fig. 3.2. A B
			4.2 kg 1.5 kg 1.5 kg after collision
			Mob: +974 85249797 / 85229781 E-ma-103063 924939014 1550
	C	bjed	ct A has velocity v and object B has velocity 3.0 m s ⁻¹ .
	(i) (Calculate the velocity v of object A after the collision.
			velocity = ms ⁻¹ [3]
	(ii) [Determine whether the collision is elastic or inelastic.

10 (a)	State	the lav	v of conservati	on of momentum.				
		**********						*************
	•••••				••••			[2]
(b)	Two p	articles	s A and B colli	de elastically, as il				
						▲ y-direction		
						∫ ^v ,	A	
			_			A 60°		
	A	->	B ● -	x-direction →	•	(x-direction ►	
	500 m	15-1	at rest			B /30°		
							v_{B}	
		b	efore collision			afte	r collision	
	·			Fig. 5.	7 7			
				00 m s ⁻¹ in the <i>x-</i> di International Examin	ations Papers			
	The ve	elocity on is <i>v</i> o	of A after the at 30° to the	collision is valat 6 cdirection.	60° to the x-	direction. The	velocity of B a	fter the
				e is 1.67 × 10 ^{–27} k				
					ž.			
	(i) E:	хріаіп і	what is meant	by the particles co				
	••	••••••	***************************************	ý		,	••••••••••	[1]
	(ii) C	alculate	e the total initia	al momentum of A	and B.			
				momen	ntum =	***************************************	•	Ns [1]

(iii)	State an expression in terms of m , $v_{\rm A}$ and $v_{\rm B}$ for the total momentum of A and B after the collision				
	1. in the x-direction,				
	2. in the y-direction.				
(iv)	Calculate the magnitudes of the velocities v. and v. after the collision	[2]			

..... m s⁻¹

_B =ms⁻¹

[Total: 9]

1 (a) A gas molecule has a mass of $6.64 \times 10^{-27} \, \text{kg}$ and a speed of $1250 \, \text{m s}^{-1}$. The molecule collides normally with a flat surface and rebounds with the same speed, as shown in Fig. 4.1.

Fig. 4.1

Calculate the change in momentum of the molecule.

(b)	(i)	Use the kinetic model	change in momentum = to explain the pressure exerte Mob: +974 55249797 / 55258711 E-mail:reshed.saba@gmail.com	d by gases.	Ns [2]
	(ii)	Explain the effect of an a gas.	increase in density, at consta	ant temperature,	,
					[1]

Two balls X and Y are supported by long strings, as shown in Fig. 3.1.

Fig. 3.1

The balls are each pulled back and pushed towards each other. When the balls collide at the position shown in Fig. 3.1, the strings are vertical. The balls rebound in opposite directions.

Fig. 3.2 shows data for X and Y during this collision.

ball mass		velocity just before collision/ms ⁻¹	velocity just after collision/ms ⁻¹	
X	50 g	+4.5	-1.8	
Υ	M	(mrc)-2.8	+1.4	

Fig. 3.2

The positive direction is horizontal and to the right.

(a) Use the conservation of linear momentum to determine the mass M of Y.

Mob: +974 55249797 / 55258711

E-mail:rashed.saba@gmail.com

 $M = \dots q [3]$

(b)	State and explain whether the collision is elastic.
	[1]
(c)	Use Newton's second and third laws to explain why the magnitude of the change in momentum of each ball is the same.
	[3]
	[0]

3 A I ba	ball is Il falls	thrown vertically down towards the ground with an initial velocity of 4.23 m s ⁻¹ . The for a time of 1.51 s before hitting the ground. Air resistance is negligible.
(a)	(i)	Show that the downwards velocity of the ball when it hits the ground is 19.0 m s ⁻¹ .
		[2]
	(ii)	Calculate, to three significant figures, the distance the ball falls to the ground.
		distance = m [2]
(b)	The velo	ball makes contact with the ground for 12.5 ms and rebounds with an upwards city of 18.6 m s ⁻¹ . The mass of the ball is 46.5 g.
	(i)	Calculate the average force acting on the ball on impact with the ground. CLASSIFIF magnitude of forcep=
	(ii)	Use conservation of energy to determine the maximum height the ball reaches after it hits the ground.
		height = m [2]
(c)	State inela	e and explain whether the collision the ball makes with the ground is elastic or stic.
		,
		[1]

1

A ball falls from rest onto a flat horizontal surface. Fig. 3.1 shows the variation with time *t* of the velocity *v* of the ball as it approaches and rebounds from the surface.

Fig. 3.1

Use data from Fig. 3.1 to determine

(a) the distance travelled by the ball during the first 0.40 s,

distance = m [2]

For
Examiner's
Use

(b)	the change in momentum of the ball, of mass 45 g, during contact of the ball with th surface,
	change = Ns [4
(c)	the average force acting on the ball during contact with the surface.
	CORRENCE OF THE PROPERTY OF TH
	force = N [2]
(a)	Explain what is meant by the concept of work.
	Mode 4974 58249787 / 832337 H
	[2]
(b)	
(D)	Using your answer to (a) , derive an expression for the increase in gravitational potential energy $\Delta E_{\rm p}$ when an object of mass m is raised vertically through a distance Δh near the Earth's surface.
	The acceleration of free fall near the Earth's surface is g . [2]

An experiment is conducted on the surface of the planet Mars.

A sphere of mass 0.78kg is projected almost vertically upwards from the surface of the planet. The variation with time *t* of the vertical velocity *v* in the upward direction is shown in Fig. 2.1.

The sphere lands on a small hill at time t = 4.0

(a) State the time t at which the sphere reaches its maximum height above the planet's surface.

(b) Determine the vertical height above the point of projection at which the sphere finally comes to rest on the hill.

height = m [3]

(c)	Calculate, for the first 3.5s of the motion of the sphere,	
	, , ,	For
	(i) the change in momentum of the sphere,	Examiner's

change in momentum =N s [2]

(ii) the force acting on the sphere.

.N [2

(d) Using your answer in (c)(ii),

(i) state the weight of the sphere #174 \$5249797 / 5525871

d.seba@@mail.com

weight =N [1]

(ii) determine the acceleration of free fall on the surface of Mars.

acceleration = ms^{-2} [2]

© UCLES 2009

For
For Examiner's
lise

16	(b) Just before impact with the plate, the ball of mass 35 g has speed 4.5 m s ⁻¹ . It be from the plate so that its speed immediately after losing contact with the p 3.5 m s ⁻¹ . The ball is in contact with the plate for 0.14 s.			peed 4.5 m s ⁻¹ . It bounces contact with the plate is			
Calculate, for the time that the ball is in contact with the							
		(i)	(i) the average force, in addition to the weight of the ball, that the plate exerts on the ball,				
			magni	ude of force =	N		
		direction of force =					
			RANK		[4]		
					. 		
		(ii)	the loss in kinetic energy of the ball.				
				/			
			Page 6				
			CTACCTI				
			LICOLI				
			International Examina	tions Papers			
			Mob: +974 55249797 / E-mail:rashed.soba@c				
				loss =	J [2]		
				1000	0 [2]		
	(c)	Stat	ate and explain whether linear momentum is	conserved duri	ng the bounce.		
				•••••	***************************************		
				e e			
		•••••					
					. ro1		
				••••••	[3]		

3 A ball of mass 150 g is at rest on a horizontal floor, as shown in Fig. 3.1.

Fig. 3.1

(a) (i) Calculate the magnitude of the normal contact force from the floor acting on the ball.

Fig. 3.2

Just before contact with the floor, the ball has velocity $6.2\,\mathrm{m\,s^{-1}}$ downwards. The ball bounces from the floor and its velocity just after losing contact with the floor is $2.5\,\mathrm{m\,s^{-1}}$ upwards. The ball is in contact with the floor for $0.12\,\mathrm{s}$.

(i)	State Newton's sec	tate Newton's second law of motion.				
			[1]			
(ii)	Calculate the avera	age resultant force on the ball when it				
		magnitude of force =	N			
		direction of force	[3]			
iii)	State and explain w with the floor.	hether linear momentum is conserve	ed during the collision of the ball			
		CLASSIFIED				
			[2]			
		G-mail: method subse() panell.com	[Total: 8]			