

#### www.mrc-papers.com



# **PURE MATHEMATICS 2/P2**

# **TOPIC- Algebra & functions** Sub-topic: Division (Factor & remainder theorem)



mothematics is spicy

#### Muhammad Rashed Chowdhury

B.Sc (Hons), M.Sc Assistant Professor & HOD Mathematics Instructor

Master Trainer on Creative Question Setting, Moderating & Marking, SESDP, Ministry of Education

Mobile: +974 5525 8711, +974 55249797

Whatsapp: +974 5525 8711

E-mail: muhammad@mrc-papers.com

www.mrc-papers.com



1. 
$$f(x) = 6x^3 + 3x^2 + Ax + B$$
, where A and B are constants.

Given that when f(x) is divided by (x + 1) the remainder is 45,

(a) show that 
$$B - A = 48$$

(2)

Given also that (2x + 1) is a factor of f(x),

(b) find the value of A and the value of B.

**(4)** 

(c) Factorise f(x) fully.



2.

$$f(x) = 2x^3 - 7x^2 + 4x + 4$$

(a) Use the factor theorem to show that (x-2) is a factor of f(x).

(2)

(b) Factorise f(x) completely.



3.

$$f(x) = 2x^3 - 5x^2 + ax + 18$$

where a is a constant.

Given that (x - 3) is a factor of f(x),

(a) show that a = -9

**(2)** 

(b) factori f(x) completely.

**(4)** 

Given that

$$g(y) = 2(3^{3y}) - 5(3^{2y}) - 9(3^y) + 18$$

(c) find the values of y that satisfy g(y) = 0, giving your answers to 2 decimal places where appropriate.



4.

$$f(x) = 2x^3 - 7x^2 - 10x + 24$$

(a) Use the factor theorem to show that (x + 2) is a factor of f(x).

**(2)** 

(b) Factorise f(x) completely.



5.

$$f(x) = 2x^3 - 7x^2 - 5x + 4$$

(a) Find the remainder when f(x) is divided by (x-1).

**(2)** 

(b) Use the factor theorem to show that (x+1) is a factor of f(x).

**(2)** 

(c) Factorise f(x) completely.



6

$$f(x) = 3x^3 - 5x^2 - 58x + 40$$

(a) Find the remainder when f(x) is divided by (x-3).

(2)

Given that (x-5) is a factor of f(x),

(b) find all the solutions of f(x) = 0.

**(5)** 



7.

$$f(x) = (3x-2)(x-k) - 8$$

where k is a constant.

(a) Write down the value of f(k).

(1)

When f(x) is divided by (x-2) the remainder is 4

(b) Find the value of k.

**(2)** 

(c) Factori f(x) completely.



8.

$$f(x) = 2x^3 - 3x^2 - 39x + 20$$

(a) Use the factor theorem to show that (x + 4) is a factor of f(x).

**(2)** 

(b) Factorise f(x) completely.



9.

$$f(x) = 3x^3 - 5x^2 - 16x + 12.$$

(a) Find the remainder when f(x) is divided by (x-2).

**(2)** 

Given that (x + 2) is a factor of f(x),

(b) factorise f(x) completely.



10.

$$f(x) = 2x^3 + 3x^2 - 29x - 60.$$

(a) Find the remainder when f(x) is divided by (x + 2).

**(2)** 

(b) Use the factor theorem to show that (x + 3) is a factor of f(x).

**(2)** 

(c) Factorise f(x) completely.



11.

(a) Use the factor theorem to show that (x + 4) is a factor of  $2x^3 + x^2 - 25x + 12$ .

**(2)** 

(b) Factorise  $2x^3 + x^2 - 25x + 12$  completely.



12.

 $f(x) = ax^3 + bx^2 - 4x - 3$ , where a and b are constants.

Given that (x - 1) is a factor of f(x),

(a) show that

$$a + b = 7 \tag{2}$$

Given also that, when f(x) is divided by (x + 2), the remainder is 9,

(b) find the value of a and the value of b, showing each step in your working.



13.

$$f(x) = x^3 + ax^2 + bx + 3$$
, where a and b are constants.

Given that when f(x) is divided by (x+2) the remainder is 7,

(a) show that 2a - b = 6

**(2)** 

Given also that when f(x) is divided by (x-1) the remainder is 4,

(b) find the value of a and the value of b.



14.

$$f(x) = x^4 + x^3 + 2x^2 + ax + b$$

where a and b are constants.

When f(x) is divided by (x-1), the remainder is 7.

(a) Show that a + b = 3.

**(2)** 

When f(x) is divided by (x + 2), the remainder is -8.

(b) Find the value of a and the value of b.

**(5)** 



15.

$$f(x) = 2x^3 + ax^2 + bx - 6$$

where a and b are constants.

When f(x) is divided by (2x - 1) the remainder is -5.

When f(x) is divided by (x + 2) there is no remainder.

(a) Find the value of a and the value of b.

**(6)** 

(b) Factori f(x) completely.



16.

$$f(x) = x^4 + 5x^3 + ax + b$$
,

where a and b are constants.

The remainder when f(x) is divided by (x - 2) is equal to the remainder when f(x) is divided by (x + 1).

(a) Find the value of a.

**(5)** 

Given that (x + 3) is a factor of f(x),

(b) find the value of b.



17.

(a) Find the remainder when

$$x^3 - 2x^2 - 4x + 8$$

is divided by

- (i) x-3,
- (ii) x + 2.

(3)

(b) Hence, or otherwise, find all the solutions to the equation

$$x^3 - 2x^2 - 4x + 8 = 0.$$



18.

$$f(x) = x^3 + 4x^2 + x - 6.$$

(a) Use the factor theorem to show that (x + 2) is a factor of f(x).

**(2)** 

(b) Factorise f(x) completely.

**(4)** 

(c) Write down all the solutions to the equation

$$x^3 + 4x^2 + x - 6 = 0.$$

**(1)** 



19.

$$f(x) = 2x^3 + x^2 - 5x + c$$
, where c is a constant.

Given that f(1) = 0,

(a) find the value of c,

**(2)** 

(b) factori e f(x) completely,

**(4)** 

(c) find the remainder when f(x) is divided by (2x-3).

**(2)** 



20.

$$f(x) = 6x^3 + 13x^2 - 4$$

- (a) Use the remainder theorem to find the remainder when f(x) is divided by (2x + 3). (2)
- (b) Use the factor theorem to show that (x + 2) is a factor of f(x). (2)
- (c) Factorise f(x) completely. (4)