www.mrc-papers.com

CLASSIFIED

International Examinations Papers

Mob: +974 55249797 / 55258711 E-mail:rashed.saba@gmail.com

Work, energy and power: 5

TOPIC- Transforming energy (G.P.E.-K.E), Power(P=Fv), application of principle of conservation of energy- upward-downward motion

through a distance h_0 .	with distance h fallen. The ball rea	ones the ground	a circo railing
energy A			
	E _K		4
	TARRANCO .		
	A 5 5 6 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6		,
0	CLASSIFIED		h
	International Examinations Papers 1		
	E-ma Fig pe 8:1 0-eQual com		
i) Describe the motion	on of the ball.		e e

***************************************			[3]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

0 2 A block is pulled on a horizontal surface by a force P as shown in Fig. 4.1.

The weight of the block is 180 N. The force P is 35 N at 60° to the vertical. The block moves a distance of 20 m at constant velocity.

- (a) Calculate
 - (i) the vertical force that the surface applies to the block (normal reaction force),

(ii) the work done by force P.

(i)	Explain why the block continues to move at constant velocity although wor the block by force <i>P</i> .	k is done on
		[1]
(ii)	Explain, in terms of the forces acting, why the block remains in equilibrium.	
		e * *
	(i) (ii)	

[2]

(b) A trolley of mass 400 g is moving at a constant velocity of 2.5 m s⁻¹ to the right as shown in Fig. 3.1.

Fig. 3.1

Show that the kinetic energy of the trolley is 1.3 J.

Fig. 3.2

At point P the speed of the trolley is $2.5 \,\mathrm{m\,s^{-1}}$. A variable force F acts to the left on the trolley as it moves between points P and Q. The variation of F with displacement x from P is shown in Fig. 3.3.

Fig. 3.3 9702/21/O/N/13

The trolley comes to rest at point Q.

(i) Calculate the distance PQ.

For Examiner's Use

(ii) On Fig. 3.4, sketch the variation with *x* of velocity *v* for the trolley moving between P and Q.

[2]

[4]

Complete Fig. 1.1 to show each quantity and its unit.

quantity	unit
speed	m s ⁻¹
density	
•••••	s ⁻¹
electric field strength	
	kg m s ⁻¹

Fig. 1.1

0 4	(a) (i)	Define displacement.		.*
		The state of the s	2)	
, , ,	(ii)	Use your definition to explain how it is and yet have zero displacement.	s possible for a car to trave	l a certain distance
		International Exam	*****************************	***************************************
		Mob: +874 55249 E-mailtreshed.sat		
				[3]

(b) A car starts from rest and travels upwards along a straight road inclined at an angle of 5.0° to the horizontal, as illustrated in Fig. 2.1.

Fig. 2.1

The length of the road is $450\,\mathrm{m}$ and the car has mass $800\,\mathrm{kg}$. The speed of the car increases at a constant rate and is $28\,\mathrm{m\,s^{-1}}$ at the top of the slope.

- (i) Determine, for this car travelling up the slope,
 - 1. its acceleration,

acceleration	=	 m e-2	[2]	ı
		 1113	16.1	

2. the time taken to travel the length of the slope,

3. the gain in kinetic energy,

4. the gain in gravitational potential energy.

	gain in potential energy =					
ii)	Use your answers in (i) to determine the useful output power of the car.					

05	(a)	An object falls vertically from rest through air. State and explain the energy conversions that occur as the object falls.
		[3]
	(b)	A ball of mass 150 g is thrown vertically upwards with an initial speed of 25 m s ⁻¹ .
		(i) Calculate the initial kinetic energy of the ball.
		kinetic energy = J [3]
		(ii) The ball reaches a height of 21 m above the point of release.
		For the ball rising to this height, calculate
		1. the loss of energy of the ball to air resistance,
		International Examinations Papers Mob: +974 55249797 / 55258711 E-meltrushed.saba@gmail.com
		energy loss =
		2. the average force due to the air resistance.
		force = N [2]

For Examiner's Use

6	(a)	Def	iine	1
		(i)	force,	E
			[1]	
		(ii)	work done.	
			[1]	
	(b)	A fo	proce F acts on a mass m along a straight line for a distance s . The acceleration of the ss is a and the speed changes from an initial speed u to a final speed v .	
		(i)	State the work <i>W</i> done by <i>F</i> .	
			[1]	
		(ii)	Use your answer in (i) and an equation of motion to show that kinetic energy of a mass can be given by the expression kinetic energy 1/2 k mass x (speed) ² .	
			International Examinations Papers Mod. +974 55249797 55258728 2-mon cooper cohescomer.com	
			[3]	
,	(c)	A re	esultant force of $3800\mathrm{N}$ causes a car of mass of $1500\mathrm{kg}$ to accelerate from an initial ed of $15\mathrm{ms^{-1}}$ to a final speed of $30\mathrm{ms^{-1}}$.	
		(i)	Calculate the distance moved by the car during this acceleration.	
			distance = m [2]	
	,		The same force is used to change the speed of the car from $30\mathrm{ms^{-1}}$ to $45\mathrm{ms^{-1}}$. Explain why the distance moved is not the same as that calculated in (i).	
UCLE	ES 20	11	9702/22/O/N/11 [Turn o	OV(

07	(a)	(i)	Explain what is meant by work done.
U ,8	()	(-)	Explain what is meant by work done.
			[1]
		(ii)	
		(11)	Define power.
			[1]
	(b)	Eia	· · · · · · · · · · · · · · · · · · ·
	(D)	rig.	3.1 shows part of a fairground ride with a carriage on rails.
			Someonium,
			$9.5\mathrm{ms^{-1}}$
			30°

			Fig. a.c.
		The	carriage and passengers have a total mass of 600 kg. The carriage is travelling at a
		Shec	U U 3.31115 LOWARDS A SIDDE Inclined at 30° to the horizontal. The coming a
	1	to re	st after travelling up the slope to a vertical height of 4.1 m.
1971		(i)	Calculate the kinetic energy, in ky, of the carriage and passengers as they travel
			towards the slope. Mab: +974 55249797 55255711
			kinetic energy = kJ [3]
			kinetic energy = kJ [3]

[2]

For Examiner's Use

(ii) Show that the gain in potential energy of the carriage and passengers is 24kJ.

(iii) Calculate the work done against the resistive force as the carriage moves up the slope.

For Examiner's Use

work done =	 kJ	[1]	ı
	 113		

(iv) Use your answer in (iii) to calculate the resistive force acting against the carriage as it moves up the slope.

resistive force = N [2]

80	(a)	Explain what is meant by work done.
		[1
(1	b)	A car is travelling along a road that has a uniform downhill gradient, as shown in Fig. 2.1.
		$25\mathrm{ms^{-1}}$
		7.5°
		Fig. 2.1
	,	The car has a total mass of 850 kg. The angle of the road to the horizontal is 7.5°.
		Calculate the component of the weight of the car down the slope.
2 4		
(c)		component of weight =
		[2]
	(ii	Calculate the distance the car travels from when the brakes are applied until the car comes to rest.
		distance = m [2]

For Examiner's Use

(iii)	Calculate		
	1. the loss of kin	etic energy of the car,	
		loss of kinetic energy =	J [2
	2. the work done	by the resisting force of 4600 N.	
		work done =	J [1]
(iv)	The quantities in (iii		•
()	quantities are not e	i) part 1 and in (iii) part 2 are n qual.	ot equal. Explain why these two
		/odesances)	
			[1]
			A Special Conference of the Co
		CLA551FIED	
		International Examinations Papers	
		Mob: +974 55249797 / 55258711 E-meil:reshed.saba@gmail.com	

For Examiner's Use **09** A motor is used to move bricks vertically upwards, as shown in Fig. 5.1.

Fig. 5.1

The bricks start from rest and accelerate for $2.0 \, \text{s}$. The bricks then travel at a constant speed of $0.64 \, \text{m} \, \text{s}^{-1}$ for $25 \, \text{s}$. Finally the bricks are brought to rest in a further $3.0 \, \text{s}$.

(iii) in the final 3.0s.

change in kinetic energy = J [1]

(b) The bricks are in a container. The weight of the container and bricks is 350 N.
Calculate, for the lifting of the bricks and container when travelling at constant speed,

(i) the gain in potential energy,

(ii) the power required.

10 (a) Define velo	ocity.
--------------------	--------

[41]

(b) A ball of mass $0.45\,\mathrm{kg}$ leaves the edge of a table with a horizontal velocity v, as shown in Fig. 2.1.

Fig. 2.1

The height of the table is 1.25 m. The ball travels a distance of 1.50 m horizontally before hitting the floor.

Air resistance is negligible.

Calculate, for the ball,

(i) the horizontal velocity

V	ลร	iŧ	leav	100	th	a t	ah	ما	Section and the second
V	as	1	ieav	es	un	вι	αU	чe	Section .

International Examinations Papers

,	=	ms ⁻¹	[3]
	_		ĺ

(ii) the velocity just as it hits the floo	(ii)	the	velocity	iust	as	it	hits	the	floo
--	------	-----	----------	------	----	----	------	-----	------

angle to the horizontal =						
(iv) the loss in gravitational potential energy as it falls from the table to the floor. Classification of the loss of gravitational potential energy J[2]			magnitude of velo	city =	***************************************	ms
(iv) the loss in gravitational potential energy as it falls from the table to the floor. Classification of the loss of gravitational potential energy J[2]			angle to the horizon	ntal =	****************	
(iv) the loss in gravitational potential energy as it falls from the table to the floor. loss in potential energy						
loss in potential energy =	(iii) the k	inetic energy ju	st as it hits the floor,			
loss in potential energy =			CARLANGE OF THE PARTY OF THE PA			*
loss in potential energy =			(/ Ringtic and			Lo
Explain why the kinetic energy of the ball in (b)(iii) does not equal the loss of gravitational potential energy in (b)(iv) .	(iv) the lo	ess in gravitation	International Examination	es Papers		
Explain why the kinetic energy of the ball in (b)(iii) does not equal the loss of gravitational potential energy in (b)(iv) .						
Explain why the kinetic energy of the ball in (b)(iii) does not equal the loss of gravitational potential energy in (b)(iv) .						
Explain why the kinetic energy of the ball in (b)(iii) does not equal the loss of gravitational potential energy in (b)(iv) .				,		
Explain why the kinetic energy of the ball in (b)(iii) does not equal the loss of gravitational potential energy in (b)(iv) .						
Explain why the kinetic energy of the ball in (b)(iii) does not equal the loss of gravitational potential energy in (b)(iv) .						
potential energy in (b)(iv) .			loss in potential ener	gy =	*******	J [2]
[1]	Explain whe	hy the kinetic energy in (b)(iv)	nergy of the ball in (b)(iii) does	not equal the	e loss of gravitational
					,	
	***************************************	••••••	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	***************	*******	[11

(c)

A steel ball falls from a platform on a tower to the ground below, as shown in Fig. 3.1.

Fig. 3.1

The ball falls from rest through a vertical distance of 192m. The mass of the ball is 270g.

- (a) Assume air resistance is negligible.
 - (i) Calculate

1. the time taken for the ball to fall to the ground,

2. the maximum kinetic energy of the ball.

	maximum kinetic energy =
(ii)	State and explain the variation of the velocity of the ball with time as the ball falls to the ground.
	[1]

(iii) Show that the velocity of the ball on reaching the ground is approximately 60 m s⁻¹.

(b) In practice, air resistance is not negligible. The variation of the air resistance R with the velocity v of the ball is shown in Fig. 3.2.

(i)	Use Fig. 3.2 to state and explain qualitatively	the variation of the acceleration of the bal
	with the distance fallen by the ball.	

E-mail:rashed.saba@amail.com

The speed of the ball reaches 40 m s⁻¹. Calculate its acceleration at this speed.

acceleration = ms⁻² [2]

Use information from (a)(iii) and Fig. 3.2 to state and explain whether the ball reaches (iii) terminal velocity.

12	(a)	Explain what is meant by	gravitational potential energy a	nd by kinetic energy.
		gravitational potential ener	gy:	
		kinetic energy:		
				[2
	(b)	A motion sensor is used to as illustrated in Fig. 3.1.	measure the velocity of a ball	falling vertically towards the ground
			motion sen	sor
			v \ A	
		22000		
		ground	В	
		The ball passes through po	Fig. 3.1	ll has a mass of 1.5kg.
			International Examinations Papers Mob: +974 55249797 / 55258711 E-mail:reshed.saba@gmail.com	That a made of hong.

The variation with time t of the velocity v of the ball as it falls from A to B is shown in Fig. 3.2.

(i) the displacement,

displacement =m [3]

(ii) the acceleration,

acceleration = ms⁻² [2]

(iii) the change in kinetic energy.

change in kinetic energy =J [3]

(c) Show that the work done by the gravitational field on the ball in (b) as it moves from A to B is equal to the change in kinetic energy.

[2]

[Total: 12]

13 The variation with time t of the velocity v of a ball is shown in Fig. 2.1.

Fig. 2.1

The ball moves in a straight line from a point P at t = 0. The mass of the ball is 400 g.

(a)	Use Fig. 2.1 to describe,	without	calculation, the v	elocity of the	ball from $t = 0$ to $t = 1$	6s
-----	---------------------------	---------	--------------------	----------------	------------------------------	----

 VACUULILLU	
International Examinations Papers	
 Mob: +974 55249797 / 55258711	
E-walluselleg tryn@@wstrcow	

[5]

(b) Use Fig. 2.1 to calculate, for the ba	(b)	Use Fig. 2.1	to calculate,	for the ba
---	-----	--------------	---------------	------------

(i) the displacement from P at t = 10 s,

displacement =	 m	[2]
•	 111	12

(ii) the acceleration at $t = 10 \, \text{s}$,

(iii) the maximum kinetic energy.

International Examinations Papers

Mob: +974 55249797 / 55258711
E-meiltrached.saba@gmail.com

(c) Use your answers in (b)(i) and (b)(ii) to determine the time from t = 0 for the ball to return to P.

time = s [2]

14 (a) A stone of mass 56g is thrown horizontally from the top of a cliff with a speed of $18\,\mathrm{m\,s^{-1}}$, as illustrated in Fig. 4.1.

Fig. 4.1

The initial height of the stone above the level of the sea is 16 m. Air resistance may be neglected.

(i) Calculate the change in gravitational potential energy of the stone as a result of falling through 16 m.

change	=	•••••				J		2
--------	---	-------	--	--	--	---	--	---

(ii) Calculate the total kinetic energy of the stone as it reaches the sea.

kinetic energy = J [3]

For
Examiner's
llso

(b) Use your answer in (a)(ii) to show that the speed of the stone as it hits the water is approximately $25\,\mathrm{m\,s^{-1}}$.

[1]

(c) State the horizontal velocity of the stone as it hits the water.

horizontal velocity =ms⁻¹ [1]

(d) (i) On the grid of Fig. 4.2, draw a vector diagram to represent the horizontal velocity and the resultant velocity of the stone as it hits the water. [1]

Fig. 4.2

(ii) Use your vector diagram to determine the angle with the horizontal at which the stone hits the water.

angle = ° [2]

15 Fig. 2.1 shows an object M on a slope.

M moves up the slope, comes to rest at point Q and then moves back down the slope to point R. M has a constant acceleration of $3.0\,\mathrm{m\,s^{-2}}$ down the slope at all times. At time t=0, M is at point P and has a velocity of $3.6\,\mathrm{m\,s^{-1}}$ up the slope. The total distance from P to Q and then to R is $6.0\,\mathrm{m}$.

- (a) Calculate, for the motion of M from P to Q,
 - (i) the time taken,

(ii) the distance travelled.

distance = m [1]

(b) Show that the speed of M at R is $4.8 \,\mathrm{m \, s^{-1}}$.

(c) On Fig. 2.2, draw the variation with time t of the velocity v of M for the motion P to Q to R.

(d) The mass of M is 450 g.

Calculate the difference in the kinetic energy of M at P and at R.

16

A bullet of mass 2.0 g is fired horizontally into a block of wood of mass 600 g. The block is suspended from strings so that it is free to move in a vertical plane.

The bullet buries itself in the block. The block and bullet rise together through a vertical distance of 8.6 cm, as shown in Fig. 3.1.

For Examiner's Use

change	=		J	[2
onango		***************************************	J	[4

(ii) Show that the initial speed of the block and the bullet, after they began to move off together, was $1.3\,\mathrm{m\,s^{-1}}$.

(b)			in (a)(ii) and the p f the bullet before the ir		ion of momentum,
			er	peed =	m s ⁻¹ [2]
			, ,	,	III 5 [2]
(c)	(i)	Calculate the kine	tic energy of the bullet	ust before impact.	
w			kineticen	eracionale de la company de la	J [2]
					·
	(ii)		what can be deduced front in between the bullet an		c)(i) and (a)(i) about
		the type of comolor	I CLASSII		
			International Examina	ions Papers	
			Mob: +974 55249797 /	55258711	
		***************************************			[2]

For Examiner's Use 7 A ball has mass m. It is dropped onto a horizontal plate as shown in Fig. 4.1.

Fig. 4.1

Just as the ball makes contact with the plate, it has velocity v, momentum p and kinetic energy $E_{\mathbf{k}}$.

(a) (i) Write down an expression for momentum p in terms of m and v.

(ii) Hence show that the kinetic energy is given by the expression

CLASSIFILD

International Examinations Papers

Mob: +974 55249787 / 55268711

E-mail:rashed.saba@gmail.com

www.mrc-papers.com

CLASSIFIED

International Examinations Papers

Mob: +974 55249797 / 55258711 E-mail:rashed.saba@gmail.com

Work, energy and power: 5

TOPIC- Transforming energy (G.P.E.-K.E),

Copyright@MRC®: (9702/02 -P2) - 2010-2017

+97455258711

rashed.saba@gmail.com

(a)	(i)	Define potential energy.
		[1]
	(ii)	Distinguish between <i>gravitational</i> potential energy and <i>elastic</i> potential energy.
		gravitational potential energy
		elastic potential energy
		[2]
	(a)	

(b) A small sphere of mass 51 g is suspended by a light inextensible string from a fixed point P.

The centre of the sphere is 61 cm vertically below point P, as shown in Fig. 3.1.

The sphere is moved to one side, keeping the string taut, so that the string makes an angle of 18° with the vertical. Calculate

the gain in gravitational potential energy of the sphere,

gain	=	 J [2]

(ii) the moment of the weight of the sphere about point P.

moment = N m [2]

0 2 ^(a)	Distinguish between gravitational potential energy and electric potential energy.
	[2]
(b)	A body of mass <i>m</i> moves vertically through a distance <i>h</i> near the Earth's surface. Use the defining equation for work done to derive an expression for the gravitational potential energy change of the body.
	[2]
(c)	Water flows down a stream from a reservoir and then causes a water wheel to rotate, as
	shown in Fig. 4.1.
	reservoir
	120m
	International Examinations Papers V wester who all

Fig. 4.1

Mob: +974 55249797 / 5525371 E-mail:reshed.saba@gmail.com

As the water falls through a vertical height of 120m, gravitational potential energy is converted to different forms of energy, including kinetic energy of the water. At the water wheel, the kinetic energy of the water is only 10% of its gravitational potential energy at the reservoir.

water wheel

Show that the speed of the water as it reaches the wheel is 15 m s⁻¹.

(ii) The rotating water wheel is used to produce 110 kW of electrical power. Calculate the mass of water flowing per second through the wheel, assuming that the production of electric energy from the kinetic energy of the water is 25% efficient.

For Examiner's Use

mass of water per second = $kg s^{-1}$ [3]

A cyclist is moving up a slope that has a constant gradient. The cyclist takes 8.0s to climb the slope.

The variation with time t of the speed v of the cyclist is shown in Fig. 3.1.

(a) Use Fig. 3.1 to determine the total distance moved up the slope.

International Examinations Papers
Mob: +974 55249797 / 55258711
E-mell:reshed.saba@gmail.com

distance = m [3]

	9
(b)	The bicycle and cyclist have a combined mass of 92 kg. The vertical height through which the cyclist moves is 1.3 m.
	(i) For the movement of the bicycle and cyclist between $t = 0$ and $t = 8.0$ s,
	1. use Fig. 3.1 to calculate the change in kinetic energy,
	change = J [2
	2. calculate the change in gravitational potential energy.
	CLASSIFIED International Examinations Papers Change =
(i	The cyclist pedals continuously so that the useful power delivered to the bicycle is 75W.
	Calculate the useful work done by the cyclist climbing up the slope.

(c) Some energy is used in	overcoming frictiona	al forces.		
(i) Use your answers frictional forces is a	in (b) to show that pproximately 670 J.	the total energy	converted in over	rcominç
		,		
(ii) Dotomico de				[1]
(ii) Determine the avera	ge magnitude of the	frictional forces.		
	(assance			
		19		
	average f	orce =		N [1]
(d) Suggest why the magnitude	L International Examina	tions Papers		[1]
(a) Suggest why the magnitud	Mob: +974 55249797 ; E-mail:reshed.saba@c	tions Papers ve force would not 55258711 mail.com	be constant.	
		***************************************	*******************************	
	e e			[0]
			••••••	[2]
		· ·		

Q 4 A ball of mass 0.030 kg moves along a curved track, as shown in Fig. 2.1.

Fig. 2.1

The speed of the ball is $1.3\,\mathrm{m\,s^{-1}}$ when it is at point A at a height of $0.31\,\mathrm{m}$. The ball moves down the track and collides with a vertical wall at point B. The ball then rebounds back up the track. It may be assumed that frictional forces are negligible.

(b) Show that the ball hits the wall at B with a speed of $2.8 \, \text{m s}^{-1}$.

(6)		is in contact	with the v	n of the vall for a	time of 2	o the coll 0ms.	ision with	the wall	s 0.096kç	ıms⁻¹. The
	Dete	ermine, for th	ne ball col	liding wit	th the wall	l,				
	(i)	the speed ir	nmediatel	y after ti	ne collisio	n,				
						ls.				
						speed =				ms ⁻¹ [2]
	(ii)	the magnitu	de of the a	average	force on t	he ball.				
					A CONTROL OF THE PARTY OF THE P	force =				VI IV
(d)	State	e and explair	ı whether		Sion is ela ional Examin	istic or ine	rs			N [2]
			•••••	erron dikola e E-ene	••••••••••••••••••••••••••••••••••••••	and the second second second				
(e)	In pra	actice, friction moving fro	nal effects m A to B i	s are sig	nificant so	that the	actual ind	crease in een A an	kinetic end d B is 0.60	[1] ergy of the) m.
	Use y	your answer A to B.	in (a) to d	letermin	e the aver	age friction	onal force	acting on	the ball a	s it moves
						X				
					frictional	force =	•••••	· ••••••••••••••••••••••••••••••••••••		N [2]
						·				[Total: 12]

www.mrc-papers.com

CLASSIFIED

International Examinations Papers

Mob: +974 55249797 / 55258711 E-mail:rashed.saba@gmail.com

Work, energy and power: 5

TOPIC- Power (P=Fv)

			Answer all the questions in the spaces provided.
1	(a)	Def	ine what is meant by
		(i)	work done,
			[2]
		(ii)	power.
			[1]
	(b)	A fo	rce F is acting on a body that is moving with velocity v in the direction of the force.
			ve an expression relating the power P dissipated by the force to F and v .
			THE ARRANGED IN
			CLASSIFIED
			International Examinations Papers Mob. +974 55265797 / 55265731
			E-mail:rashed.saha@pmail.com
			[2]
	(c)	A ca	r of mass 1900 kg accelerates from rest to a speed of $27\mathrm{ms^{-1}}$ in 8.1 s.
		(i)	Calculate the average rate at which kinetic energy is supplied to the car during the acceleration.

© UCLES 2006

(11)	The car engine provides power at a constant rate. Suggest and explain wacceleration of the car is not constant.	hy the
		······································
	***************************************	[2]

1 Two forces, each of magnitude F, form a couple acting on the edge of a disc of radius r, as shown in Fig. 5.1.

Fig. 5.1

- (a) The disc is made to complete n revolutions about an axis through its centre, normal to the plane of the disc. Write down an expression for
 - (i) the distance moved by a point on the circumference of the disc,

distance =

(ii) the work done by one of the two forces.

(b) Using your answer to (a), show that the work W done by a couple producing a torque T when it turns through n revolutions is given by

W = 2πnT.
International Examinations Papers

Mob: +974 55249797 / 55258711
E-mail:rashed.saba@gmail.com

[2]

(c) A car engine produces a torque of 470 Nm at 2400 revolutions per minute. Calculate the output power of the engine.

power = W [2]

03	A Shonning trolley and its cont	tants have a total mass of to		
0 0	A shopping trolley and its cont along a horizontal surface at a distance of 1.9 m before coming	i specu di 1.7 ms - when ma	kg. The trolley is being pushed trolley is released, it travels a	d a
	(a) Assuming that the total for	ce opposing the motion of the	trolley is constant,	
	(i) calculate the decelera			
		deceleration =	ms ⁻² [2]	
	(ii) show that the total force	e opposing the motion of the	trolley is 16N.	
		(mrc)		
		CLASSIFIED		
		International Examinations Papers Mob: +974 55249797 / 55258711		
	(b) Using the answer in (a)(ii).	E-mail:reshed.seba@gmail.com	[1]	
	opposing the motion of the t	calculate the power required trolley at a speed of 1.2 m s ⁻¹ .	d to overcome the total force	
ē				

	9
(0	The trolley now moves down a straight slope that is inclined at an angle of 2.8° to the horizontal, as shown in Fig. 3.1.
	2.8°
	Fig. 3.1
	The constant force that opposes the motion of the trolley is 16 N.
	Calculate, for the trolley moving down the slope,
	(i) the component down the slope of the trolley's weight,
	component of weight =
	time =s [4]
d)	Use your answer to (c)(ii) to explain why, for safety reasons, the slope is not made any steeper.

(a)	Define <i>power</i> .			
				[1
(b)	Fig. 3.1 shows a car trave	lling at a speed of 22 m s ⁻¹	¹ on a horizontal road.	
		speed 22 m s ⁻¹		. "
			1200 N	
	horizontal road		resistive force	
		/// //////////////////////////////////		
		Fig. 3.1		
	The car has a mass of 150	00 kg. A resistive force of 1	200 N acts on the car.	
	Calculate			
	(i) the force F required fr	om the car to produce an	acceleration of 0.82 m s ⁻² ,	
		The state of the s		
		CIASIFIE	Wilderson process process and the control of the co	
		International Examinations Pap Mob: +974 35249797 / 55258711 E-meitrushed.aba@gmail.com	SCIS CONTRACTOR OF THE SCIENCE OF TH	N [3]
(i	i) the power required to	produce this acceleration.		
•	, are person required to	produce this acceleration.		
		power =		W [2]
(c) T	he resistive force on the caugest why the car has a	ar is proportional to v^2 , when v^2 is the maximum speed.	here v is the speed of the car	•
· · · · · ·				
	*			ran

	•		r .
05	(a)	(i)	Define power.
			[1]
		(ii)	Use your definition in (i) to show that power may also be expressed as the product of
		• •	force and velocity.
			[2]
	(b)	Λ Ιο	[2]
	(6)	A 10	rry moves up a road that is inclined at 9.0° to the horizontal, as shown in Fig. 2.1.
			$8.5\mathrm{ms^{-1}}$
			road
			and the second s
			Fig. 2.1
		The	lorry has mass 2500 kg and is travelling at a constant speed of 8.5 m s ⁻¹ . The force due to
		air re	esistance is negligible. CLASSIPILL
		(i)	International Examinations Papers Calculate the useful power from the engine to move the lorry up the road.
			E-mail:reched.saba@gmail.com
			power = kW [3]
	(ii) :	State two reasons why the rate of change of potential energy of the lorry is equal to the power calculated in (i).
		1	
			<i>i</i>
		4	
			[2]

www.mrc-papers.com

CLASSIFIED

International Examinations Papers

Mob: +974 55249797 / 55258711 E-mail:rashed.saba@gmail.com

Work, energy and power: 5

TOPIC- Application of principle of conservation of energy- upward-downward motion

Copyright@MRC®: (9702/02 -P2) - 2010-2017

+97455258711

rashed.saba@gmail.com

A ball is thrown from A to B as shown in Fig. 2.1.

Fig. 2.1

The ball is thrown with an initial velocity V at 60° to the horizontal.

The variation with time t of the vertical component $V_{\dot{V}}$ of the velocity of the ball from t=0 to $t=0.60\,\mathrm{s}$ is shown in Fig. 2.2.

Fig. 2.2

Assume	air	resistance	is	negligible.
--------	-----	------------	----	-------------

(a) (i) Complete Fig. 2.2 for the time until the ball reaches B.

[2]

(ii) Calculate the maximum height reached by the ball.

height =m [2]

- (iii) Calculate the horizontal component V_h of the velocity of the ball at time t = 0.
- (iv) On Fig. 2.2, sketch the variation with rof V_h Label this sketch V_h . [1]
- (b) The ball has mass 0.65 kg. Calculate, for the ball,
 - (i) the maximum kinetic energy, International Examinations Pape

Mob: +974 55249797 / 55258711 E-mail:reshed.saba@gmail.com

- (ii) the maximum potential energy above the ground.

02	(a)	Explain what is meant by	gravitational po	otential energy	and <i>kinetic</i> energ	y. *	
		gravitational potential ene					
		kinetic energy:	•••••				••••
		,					
							[2]
	(b)	A ball of mass 400g is the horizontal, as shown in Fig.	rown with an in g. 4.1.	itial velocity of	30.0 m s ⁻¹ at an a	angle of 45.0° to t	he
				5			
		20.014/	A		path	of ball	
		30.0 m s ⁻¹		H			
		45.0°	//////////////////////////////////////	111111111111111111111111111111111111111		'////	
				,,,,,,,,,,,			
				4.1			
		Air resistance is negligible	. The ball reach	ies a maximum	n height <i>H</i> after a	time of 2.16s.	
		(i) Calculate					
		1. the initial kinetic e	nergy of the ba				
			International Exa	JAA AAAA/ minations Papers			
			. Mob: +974-552 E-mailtrashed.s	49797 55258714			
					#### 		
			kineti	c energy =		J [3]	
		2. the maximum heig	ht H of the ball,				
				H =		m [2]	

3.	the gravitational	potential	energy of	f the	ball at	heiaht	н
	J	Potonicia	CHOIGI OF		van at	IICIGIL	

		potential energy =	J [2]
(ii)	1. Determine the kin	etic energy of the ball at its ma	aximum height.
		kinetic energy =	J [1]
	2. Explain why the ki	inetic energy of the ball at max	imum height is not zero.
		(Angella)	[1]
			[1]
		CLASSITID	
		International Examinations Papers	
	,	Mob: +974 55249797 / 55258711 E-mail:rashed.saba@gmail.com	

(i) A ball of mass 65g is thrown vertically upwards from ground level with a speed of 16ms ⁻¹ . Air resistance is negligible. (i) Calculate, for the ball, 1. the initial kinetic energy, kinetic energy =	(a) [Distinguish between gravitational potential energy and elastic potential energy.			
(ii) Calculate, for the ball, 1. the initial kinetic energy, kinetic energy =	 (h) Δ				
kinetic energy =	1	6 m s ⁻¹ . Air resistance is negligible.			
kinetic energy =	•	i) Calculate, for the ball,			
2. the maximum height reached. CInaximum height —		1. the initial kinetic energy,			
2. the maximum height reached. CInaximum height =					
2. the maximum height reached. CInaximum height —		•			
2. the maximum height reached. CInaximum height —					
(ii) The ball takes time t to reach maximum height. For thrown, calculate the ratio t ratio		kinetic energy = J [2]			
potential energy of ball kinetic energy of ball ratio =	(ii	The ball takes time t to reach maximum height. For time $\frac{t}{3}$ after the ball has been			
ratio =		potential energy of ball			
(iii) State and explain the effect of air resistance on the time taken for the ball to reach maximum height.		kinetic energy of ball			
(iii) State and explain the effect of air resistance on the time taken for the ball to reach maximum height.					
(iii) State and explain the effect of air resistance on the time taken for the ball to reach maximum height.					
(iii) State and explain the effect of air resistance on the time taken for the ball to reach maximum height.					
maximum height.		ratio =[3]			
	(iii)	•			

(a) A ball is thrown vertically down towards the ground and rebounds as illustrated in Fig. 2.1.

For Examiner's Use

Fig. 2.1

As the ball passes A, it has a speed of $8.4\,\mathrm{m\,s^{-1}}$. The height of A is $5.0\,\mathrm{m}$ above the ground. The ball hits the ground and rebounds to B. Assume that air resistance is negligible.

(ii) Show that the time taken for the ball to reach the ground is 0.47 s.

[1]

(b) The ball rebounds vertically with a speed of $4.2\,\mathrm{m\,s^{-1}}$ as it leaves the ground. The time the ball is in contact with the ground is 20 ms. The ball rebounds to a maximum height h.

For Examiner's Use

The ball passes A at time t = 0. On Fig. 2.2, plot a graph to show the variation with time t of the velocity v of the ball. Continue the graph until the ball has rebounded from the ground and reaches B.

(c) The ball has a mass of 0.050 kg. It moves from A and reaches B after rebounding.

(i) For this motion, calculate the change in Papers

1. kinetic energy,

Mob: +974 55249797 / 55258711 E-mail:rashed.saba@gmail.com

change in kinetic energy = J [2]

2. gravitational potential energy.

change in potential energy = J [3]

(ii)	State and explain the total change in energy of the ball for this motion.				

Fig. 3.2

The total mass of B is 75 kg. For B, from t = 0 to t = 2.5 s,

1. show that the distance moved down the slope is 9.3 m,

[2]

2. calculate the gain in kinetic energy,

3. calculate the loss in potential energy.

4. calculate the resistive force *F*.

F = N [3]

Fig. 2.1

A small block of metal M is released from rest at point A. It slides down the slope to B and up the opposite side to C. Points A and C are 0.26m above B. Assume frictional forces are negligible.

a)	(i)	Describe and explain the acceleration of M as it travels from A to B and from B to		
			(Anic)	[3]
	(ii)	Calculate the time tak	en for M to travel from A to B.	[5]
			CLASSIFIED	
			International Examinations Papers	
			Mob: ∻974 55249797 / 55258711 E-mail:rashed.saba@gmail.com	

time = s [3

(iii) Calculate the speed of M at B.

speed = ms^{-1} [2]

(b) The plank BC is adjusted so that the angle it makes with the horizontal is 30°. M is released from rest at point A and slides down the slope to B. It then slides a distance along the plank from B towards C.

Use the law of conservation of energy to calculate this distance. Explain your working.

distance = m [2]