www.mrc-papers.com ## **PURE MATHEMATICS 2/P2** # **TOPIC- Sequences and series Sub-topic: BINOMIAL EXPANSION** #### Muhammad Rashed Chowdhury B.Sc (Hons), M.Sc Assistant Professor & HOD Mathematics Instructor Master Trainer on Creative Question Setting, Moderating & Marking, SESDP, Ministry of Education Mobile: +974 5525 8711, +974 55249797 Whatsapp: +974 5525 8711 E-mail: muhammad@mrc-papers.com www.mrc-papers.com 10. The first 3 terms, in ascending powers of x, in the binomial expansion of $(1 + ax)^{20}$ are given by $$1 + 4x + px^2$$ where a and p are constants. (a) Find the value of a. (2) (b) Find the value of p. **(2)** One of the terms in the binomial expansion of $(1 + ax)^{20}$ is qx^4 , where q is a constant. (c) Find the value of q. **(2)** JA-17-I-12-10 1. Find the first 4 terms, in ascending powers of x, of the binomial expansion of $$\left(3-\frac{1}{3}x\right)^5$$ giving each term in its simplest form. **(4)** 5. (a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of $$(2-9x)^4$$ giving each term in its simplest form. **(4)** $$f(x) = (1 + kx)(2 - 9x)^4$$, where k is a constant The expansion, in ascending powers of x, of f(x) up to and including the term in x^2 is $$A - 232x + Bx^2$$ where A and B are constants. (b) Write down the value of A. **(1)** (c) Find the value of k. **(2)** (d) Hence find the value of B. **(2)** 7. (a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of $(1 + kx)^8$, where k is a non-zero constant. Give each term in its simplest form. Given that the coefficient of x^3 in this expansion is 1512 (b) find the value of k. JA-16-IAL-12 1. The first three terms in ascending powers of x in the binomial expansion of $(1 + px)^8$ are given by $$1 + 12x + qx^2$$ where p and q are constants. Find the value of p and the value of q. **(5)** JU-16-IAL-12 1. Find the first 3 terms, in ascending powers of x, of the binomial expansion of $$\left(2-\frac{x}{4}\right)^{10}$$ giving each term in its simplest form. **(4)** 4. (a) Find the first 4 terms in ascending powers of x of the binomial expansion of $$\left(2+\frac{x}{4}\right)^{10}$$ giving each term in its simplest form. **(4)** (b) Use your expansion to find an estimated value for 2.025^{10} , stating the value of x which you have used and showing your working. **(3)** **6.** (a) Find the first 3 terms in ascending powers of x of the binomial expansion of $$(2 + ax)^6$$ where a is a non-zero constant. Give each term in its simplest form. **(4)** Given that, in the expansion, the coefficient of x is equal to the coefficient of x^2 (b) find the value of *a*. **(2)** JU-15-I-12 4. (a) Find the first 4 terms in ascending powers of x of the binomial expansion of $$\left(2+\frac{x}{4}\right)^{10}$$ giving each term in its simplest form. **(4)** (b) Use your expansion to find an estimated value for 2.025^{10} , stating the value of x which you have used and showing your working. **(3)** JA-15-I-12 3. (a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of $$(2-3x)^6$$ giving each term in its simplest form. **(4)** (b) Hence, or otherwise, find the first 3 terms, in ascending powers of x, of the expansion of $$\left(1+\frac{x}{2}\right)(2-3x)^6$$ (3) 1. The first three terms in ascending powers of x in the binomial expansion of $(1 + px)^{12}$ are given by $$1 + 18x + qx^2$$ where p and q are constants. Find the value of p and the value of q. **(5)** 1. Find the first 3 terms in ascending powers of x of $$\left(2-\frac{x}{2}\right)^6$$ giving each term in its simplest form. **(4)** JA-14-I-12 2. (a) Use the binomial theorem to find all the terms of the expansion of $$(2 + 3x)^4$$ Give each term in its simplest form. **(4)** (b) Write down the expansion of $$(2-3x)^4$$ in ascending powers of x, giving each term in its simplest form. **(1)** 1. Find the first 3 terms, in ascending powers of x, in the binomial expansion of $$(2-5x)^6$$ Give each term in its simplest form. **(4)** 1. Find the first 3 terms, in ascending powers of x, of the binomial expansion of $$(2-3x)^5$$ giving each term in its simplest form. **(4)** 3. (a) Find the first 4 terms of the binomial expansion, in ascending powers of x, of $$\left(1+\frac{x}{4}\right)^8$$ giving each term in its simplest form. **(4)** (b) Use your expansion to estimate the value of (1.025)⁸, giving your answer to 4 decimal places. **(3)** 2. (a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of $$(3+bx)^5$$ where b is a non-zero constant. Give each term in its simplest form. **(4)** Given that, in this expansion, the coefficient of x^2 is twice the coefficient of x, (b) find the value of b. **(2)** - 5. Given that $\binom{40}{4} = \frac{40!}{4!b!}$, - (a) write down the value of b. **(1)** In the binomial expansion of $(1+x)^{40}$, the coefficients of x^4 and x^5 are p and q respectively. (b) Find the value of $\frac{q}{p}$. (3) **4.** (a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of $(1 + ax)^7$, where a is a constant. Give each term in its simplest form. **(4)** Given that the coefficient of x^2 in this expansion is 525, (b) find the possible values of a. **(2)** 1. Find the first 3 terms, in ascending powers of x, of the binomial expansion of $$(3-x)^6$$ and simplify each term. **(4)** 2. (a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of $$(2+kx)^7$$ where k is a constant. Give each term in its simplest form. **(4)** Given that the coefficient of x^2 is 6 times the coefficient of x, (b) find the value of k. **(2)** 1. Find the first 3 terms, in ascending powers of x, of the binomial expansion of $(3-2x)^5$, giving each term in its simplest form. **(4)** 3. (a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of $(1 + ax)^{10}$, where a is a non-zero constant. Give each term in its simplest form. **(4)** Given that, in this expansion, the coefficient of x^3 is double the coefficient of x^2 , (b) find the value of a. (2) 3. (a) Find the first 4 terms of the expansion of $\left(1 + \frac{x}{2}\right)^{10}$ in ascending powers of x, giving each term in its simplest form. **(4)** (b) Use your expansion to estimate the value of $(1.005)^{10}$, giving your answer to 5 decimal places. **(3)** 3. (a) Find the first four terms, in ascending powers of x, in the binomial expansion of $(1+kx)^6$, where k is a non-zero constant. (3) Given that, in this expansion, the coefficients of x and x^2 are equal, find (b) the value of k, **(2)** (c) the coefficient of x^3 . **(1)** 2. (a) Find the first 4 terms, in ascending powers of x, of the binomial expansion of $(1-2x)^5$. Give each term in its simplest form. **(4)** (b) If x is small, so that x^2 and higher powers can be ignored, show that $$(1+x)(1-2x)^5 \approx 1-9x$$. **(2)** ## Mob: -974 8538711 55249797 Emilitraship dabaggmal com ### **THE BINOMIAL EXPANSION-05** 1. Find the first 3 terms, in ascending powers of x, of the binomial expansion of $(2 + x)^6$, giving each term in its simplest form. **(4)** 2. (a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of $$(1+px)^9,$$ where p is a constant. **(2)** The first 3 terms are 1, 36x and qx^2 , where q is a constant. (b) Find the value of p and the value of q. **(4)** **4.** (a) Write down the first three terms, in ascending powers of x, of the binomial expansion of $(1 + px)^{12}$, where p is a non-zero constant. **(2)** Given that, in the expansion of $(1 + px)^{12}$, the coefficient of x is (-q) and the coefficient of x^2 is 11q, (b) find the value of p and the value of q. **(4)**