www.mrc-papers.com



# CLASSIFIED

**International Examinations Papers** 

Mob: +974 55249797 / 55258711 E-mail:rashed.saba@gmail.com

## **Pure Mathematics-1**

**TOPIC-** Differentiation Gradient, Tangent, Normal

1 A curve has equation  $y = \frac{k}{x}$ . Given that the gradient of the curve is -3 when x = 2, find the value of the constant k.  $\Im - \mathcal{C}$ 



International Examinations Faners

2 Find the gradient of the curve  $y = \frac{12}{x^2 - 4x}$  at the point where x = 3.

[4]







(i) Express  $3x^2 - 6x + 2$  in the form  $a(x+b)^2 + c$ , where a, b and c are constants.

[3]

(ii) The function f, where  $f(x) = x^3 - 3x^2 + 7x - 8$ , is defined for  $x \in \mathbb{R}$ . Find f'(x) and state, with a reason, whether f is an increasing function, a decreasing function or neither. [3]



International Examinations Papers

- 4 A curve has equation  $y = \frac{12}{3 2x}$ .
- N-14-12-4

(i) Find  $\frac{dy}{dx}$ .



A point moves along this curve. As the point passes through A, the x coordinate is increasing at a rate of 0.15 units per second and the y-coordinate is increasing at a rate of 0.4 units per second.

(ii) Find the possible x-coordinates of A.

[4]

A curve has equation  $y = \frac{4}{(3x+1)^2}$ . Find the equation of the tangent to the curve at the point where the line x = -1 intersects the curve.



Lemational Examinations Papers

- Q 3 A curve has equation  $y = \frac{4}{3x-4}$  and P(2, 2) is a point on the curve.  $\mathcal{I}-1/-12-4$ 
  - (i) Find the equation of the tangent to the curve at P.

[4]


(ii) Find the angle that this tangent makes with the x-axis.

[2]



International Examinations Papers

7 The equation of a curve is  $y = \frac{12}{x^2 + 3}$ .



(i) Obtain an expression for  $\frac{dy}{dx}$ .



- (ii) Find the equation of the normal to the curve at the point P(1, 3).
- (iii) A point is moving along the curve in such a way that the x-coordinate is increasing at a constant rate of 0.012 units per second. Find the rate of change of the y-coordinate as the point passes through P.



International Examinations Papers