www.mrc-papers.com

CLASSIFIED

International Examinations Papers

Mob: +974 55249797 / 55258711 E-mail:rashed.saba@gmail.com

Pure Mathematics-1

TOPIC- Quadratics

Mixed (Diff., Func.)

QUADRATICS-MIXED(Diff., Func.)

- 1 The equation of a curve is $y = 8x x^2$.
 - (i) Express $8x x^2$ in the form $a (x + b)^2$, stating the numerical values of a and b.

[3]

(ii) Hence, or otherwise, find the coordinates of the stationary point of the curve.

[2]

(iii) Find the set of values of x for which $y \ge -20$.

[3]

The function g is defined by $g: x \mapsto 8x - x^2$, for $x \ge 4$.

- W.C
- (iv) State the domain and range of g^{-1} .

[2]

(v) Find an expression, in terms of x, for $g^{-1}(x)$.

[3]

QUADRATICS-MIXED(Diff., Func.)

The curve $y = 9 - \frac{6}{x}$ and the line y + x = 8 intersect at two points. Find

(i) the coordinates of the two points,

۲4⁻

(ii) the equation of the perpendicular bisector of the line joining the two points.

Γ**4**

8-8-1

The equation of a curve C is $y = 2x^2 - 8x + 9$ and the equation of a line L is x + y = 3.

(i) Find the x-coordinates of the points of intersection of L and C.

[4]

(ii) Show that one of these points is also the stationary point of C.

Г3

QUADRATICS-MIXED(Diff., Func.)

The equation of a curve is xy = 12 and the equation of a line I is 2x + y = k, where k is a constant.

- (i) In the case where k = 11, find the coordinates of the points of intersection of l and the curve. [3]
- (ii) Find the set of values of k for which I does not intersect the curve. [4]
- (iii) In the case where k = 10, one of the points of intersection is P(2, 6). Find the angle, in degrees correct to 1 decimal place, between I and the tangent to the curve at P.

QUADRATICS-MIXED (Diff., Func., Cor Geo.)

- The equation of a curve is $y = x^2 4x + 7$ and the equation of a line is y + 3x = 9. The curve and the line intersect at the points A and B.
 - (i) The mid-point of AB is M. Show that the coordinates of M are $(\frac{1}{2}, 7\frac{1}{2})$. [4]
 - (ii) Find the coordinates of the point Q on the curve at which the tangent is parallel to the line y+3x=9.
 - (iii) Find the distance MQ. [1]

QUADRATICS-MIXED (Diff., Func., Cor Geo.)

The equation of a curve is $y = x^2 - 3x + 4$.

6

(i) Show that the whole of the curve lies above the x-axis.

[3]

(ii) Find the set of values of x for which $x^2 - 3x + 4$ is a decreasing function of x.

[1]

7-7-1

The equation of a line is y + 2x = k, where k is a constant.

(iii) In the case where k = 6, find the coordinates of the points of intersection of the line and the curve.

[3]

(iv) Find the value of k for which the line is a tangent to the curve.

[3]