
Mathematical Problems CH-07

$$6\pi\eta rv + \rho_f \frac{4}{2}\pi r^3 g = \rho_b \frac{4}{2}\pi r^3 g$$

F + U = W

par

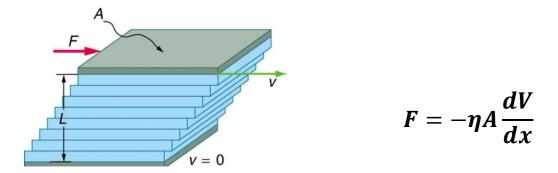
$$\eta = \frac{2r^2(\rho-\sigma)g}{9v} \eta = \frac{2r^2\rho g}{9v} \qquad v = \frac{2r^2(\rho-\sigma)g}{9\eta}$$

Q.An iron ball of radius 2 \times 10⁻⁴ m is falling through tarpin oil at terminal velocity of 4 \times 10⁻² ms⁻¹. The densities of iron and tarpin oil are respectively 7.8 \times 10³ kg m⁻³ and 0.87 \times 10³ kg m⁻³. Calculate the co-efficient of viscosity of tarpin oil. [1.5x10⁻²Nsm⁻²]

Q.A drop of water is falling through air. The terminal velocity of the drop is 1.2×10^{-2} ms⁻² and co-efficient of viscosity of air = 1.8×10^{-5} Nsm⁻². What is the diameter of the drop ?[Density of air = 1.21 kgm⁻³] [$1.99x10^{-5}$ m]

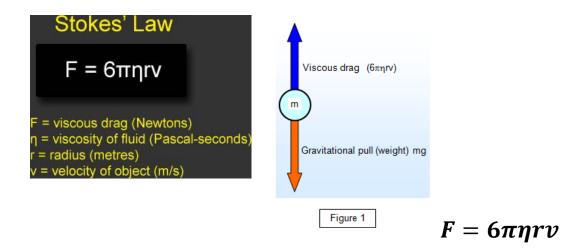
Q.Determine the radius of a drop of water falling through air with terminal velocity 1.2 cms⁻¹. The co-efficient of viscosity of air = 1.8×10^{-5} Nsm⁻² and density of air = 1.21 kgm⁻³.

Q.Calculate the terminal velocity of a rain drop of diameter 0.03 mm. The co-efficient of viscosity of air is 1.8×10^{-5} Nsm⁻² and its density is 1.2 kg m⁻³. [Ans. 2.7 cms⁻¹]


Q.A spherical ball of radius 4 \times 10⁻⁴ m is falling through glycerin at terminal velocity of 6.5 \times 1⁻³ ms⁻¹. The densities of material of the spherical ball and glycerin are respectively 11.37 \times 10³ kgm⁻³ and 1.26 \times 10³ kgm⁻³. Calculate the co-efficient of viscosity of glycerine .[Ans. 0.54 Nsm ⁻²]

Q.Calculate the terminal velocity of a rain drop of radius 0.01 mm. The co-efficient of viscosity of air is 1.8 $\times 10^{-5}$ N-sm⁻² and its density is 1.2 kgm⁻³. Density of water = 1 $\times 10^{3}$ kgm⁻³.

Q. An air bubble of diameter 2 mm steadily through a solution of density 1700 kg m⁻³ at the rate of 0.40 cm/s. Calculate the co-efficient of viscosity of the solution. The density of air is negligible.



Q. A metal plate of area 100 cm² is placed on a layer of castor oil of thickness 0.2 cm. Calculate the horizontal force required to move the plate with a speed 3cm s⁻¹.[Co-efficient of viscosity of oil = 1.55 N-sm^{-2}]

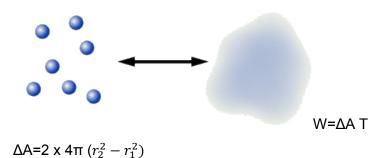
Q. A sheet of area 0.01 m² is placed on a layer of glycerin of 2 mm thickness. If a force of 0.4 N is required to move the sheet with velocity of 0.05 ms⁻¹. Calculate the co-efficient of viscosity.[1.6 N-sm⁻²]

Q.A plate of area 10 \times 10⁻³ m² is placed on a layer of castor oil($\eta = 1.55 \text{ N-sm}^{-2}$) of thickness 2 \times 10⁻³ m. Calculate the horizontal force required to move the plate with a speed pf 0.05 ms⁻¹.[Ans. 0.3875 N]

Q.A metal sphere of radius 200 mm is falling through a liquid with terminal velocity of 2.1 \times 10 $^{-2}$ ms⁻¹. The co-efficient of viscosity of the liquid 0.003 N-sm⁻². Calculate the viscous force of the liquid.

Q. A plate of area 10 \times 10⁻³ m² is placed on a layer of castor oil ($\eta = 1.55 \text{ N-sm}^{-2}$) of thickness 2 \times 10⁻³ m. Calculate the horizontal force required to move the plate with a speed of 0.05 ms⁻¹

[Ans. 0.3875 N]



Q.A sheet of area 2cm² is placed on a layer of glycerin of 3 mm thickness. If a force of 0.5 N is required to move the sheet with velocity of 4 cms⁻¹, calculate the co-efficient of viscosity . [Ans. 1.875N-sm⁻²

Q.A metal sphere of radius 25 cm is falling through a liquid with terminal velocity of 2.5 cms⁻¹. The co-efficient of viscosity of the liquid is 0.005 N-sm^{-2} . Calculate the viscous force of the liquid . [Ans. $05.88 \times 10^{-4} \text{ N}$]

Q. Eight rain drops of radius 1mm each falling downwards with a terminal velocity of 6cms⁻¹ coalesces to form a bigger drop. Find the terminal velocity of the bigger drop. [24cms⁻¹]

Q. A large drop is formed by 25 small drops of water, each of diameter 0.17×10^{-2} m. Find the energy released. [Surface tension of water = 72 $\times 10^{-3}$ Nm⁻¹]

Q. A water drop of radius 0.5 cm is broken into one million (10⁶) equal droplets. Calculate the gain in surface energy and the applied energy. [Surface tension of water 72 \times 10⁻³ Nm⁻¹]

Q. A water drop of radius 10^{-2} m is broken into 1000 equal droplets. Calculate the gain in surface energy. [Surface tension of water =0.075 Nm⁻¹] [Ans. 8.5 × 10^{-4} J]

Q. A large drop is formed by 10^3 small drops of water each of radius 1 mm. Find the energy released. [Surface tension of water = 72 $\times 10^{-3}$ Nm⁻¹] [Ans. 11.304 $\times 10^{-5}$ J]

Q. A water drop of radius 10^{-4} m is broken into 125 equal droplets. Calculate the increase in surface energy. [Surface tension of water = 7.2×10^{-2} Nm⁻¹] [Ans. 3.62×10^{-8} J]

Q. A soap bubble of radius 2 cm. is slowly increased and it reaches to a bubble of radius 3cm. [Surface tension of soap solution 4 \times 10⁻² Nm⁻¹]

Q. Two mercury drops each of radius r merge to form a bigger drop. Calculate the surface energy released. [Ans. $1.65 \pi r^2 T$]