|                                                                                       |           |                |        |               | 208                           |
|---------------------------------------------------------------------------------------|-----------|----------------|--------|---------------|-------------------------------|
| Please check the examination details below before entering your candidate information |           |                | (A)    |               |                               |
| Candidate surname                                                                     |           | Other          | names  |               |                               |
|                                                                                       |           |                |        |               | Mob: +974 55<br>E-mail:rashed |
| Pearson Edexcel                                                                       | Centre    | Number         | Can    | didate Number | $\overline{}$                 |
| nternational                                                                          |           |                |        |               |                               |
| Advanced Level                                                                        |           |                |        |               | $\prec$                       |
| <b>Tuesday 22 O</b>                                                                   | ctc       | hor 20         | 110    |               |                               |
| Tuesday 22 O                                                                          |           | DEI ZU         | , I D  |               |                               |
| Marrian (Time 11 barria 20 minut                                                      | \         | D D (          | WCL    | 12/01         | $\overline{}$                 |
| Morning (Time: 1 hour 20 minute                                                       | es)       | Paper Referen  | ce WCn | 13/01         | _                             |
| Chemistry                                                                             |           |                |        |               |                               |
| Chemistry                                                                             |           |                |        |               |                               |
| <b>International Advance</b>                                                          | d Suk     | sidiary Lev    | ⁄el    |               |                               |
| <b>Unit 3: Practical Skills</b>                                                       | in Cha    | emistry l      |        |               |                               |
| ome ser ractical skins                                                                |           | str <b>y</b> 1 |        |               |                               |
|                                                                                       |           |                |        |               | $\preceq$                     |
| Candidates must have: Scienti                                                         | ific calc | ulator         |        | Total Mai     | rks                           |
| Ruler                                                                                 |           |                |        | II.           |                               |
|                                                                                       |           |                |        | Jl            | J                             |

# Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
  - there may be more space than you need.

# Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets
  - use this as a guide as to how much time to spend on each question.
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- There is a Periodic Table on the back cover of this paper.

### **Advice**

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over ▶







# Answer ALL the questions.



# Write your answers in the spaces provided.

- 1 A series of tests is carried out on a solid compound **A** and an aqueous solution **B**.
  - (a) Compound A contains one cation and one anion.

Complete the inferences.

(i) A flame test is carried out on A.

(1)

| Observation         | Inference                                       |  |
|---------------------|-------------------------------------------------|--|
| Yellow flame colour | The <b>formula</b> of the cation in <b>A</b> is |  |
|                     |                                                 |  |

(ii) A small amount of solid **A** is placed in a test tube and heated strongly. A glowing splint is held in the mouth of the test tube.

(2)

| Observation                 | Inference                                            |
|-----------------------------|------------------------------------------------------|
| The glowing splint relights | The gas formed is                                    |
|                             | The <b>formula</b> of the anion in <b>A</b> could be |
|                             |                                                      |

(b) A series of tests is carried out on aqueous solution **B**.



(i) A piece of magnesium ribbon is added to 5 cm<sup>3</sup> of **B** in a test tube.

A lighted splint is held over the mouth of the test tube.

(2)

| Observation                      | Inference                                       |
|----------------------------------|-------------------------------------------------|
| Bubbles of gas are given off     | The gas is                                      |
| The gas burns with a squeaky pop |                                                 |
|                                  | The <b>formula</b> of the cation in <b>B</b> is |
|                                  |                                                 |

(ii) Silver nitrate solution acidified with dilute nitric acid is added to another 5 cm<sup>3</sup> of **B** in a test tube.

(2)

| Observation             | Inference                                                                              |
|-------------------------|----------------------------------------------------------------------------------------|
| White precipitate forms | The name or formula of the precipitate is  The name or formula of solution <b>B</b> is |
|                         | The name or formula of solution <b>B</b> is                                            |

(Total for Question 1 = 7 marks)





- 2 Tests are carried out to identify three organic liquids, C, D and E.
  - (a) A spatula measure of phosphorus(V) chloride,  $PCI_5$ , is added to each liquid in separate test tubes.

Any gas given off is tested with damp blue litmus paper.

| Observation                      |                                  |           |
|----------------------------------|----------------------------------|-----------|
| C                                | D                                | E         |
| Misty fumes are given off        | Misty fumes are given off        | No change |
| Damp blue litmus paper turns red | Damp blue litmus paper turns red |           |

Identify, by name or formula, the misty fumes produced by liquids **C** and **D**.

(1)

(b) 2 cm³ of aqueous sodium carbonate, Na<sub>2</sub>CO<sub>3</sub>(aq), is added to each liquid in separate test tubes.

Any gas given off is tested with limewater.

| Observation                               |           |           |  |
|-------------------------------------------|-----------|-----------|--|
| C                                         | D         | E         |  |
| Bubbles of a colourless gas are given off | No change | No change |  |
| Limewater turns cloudy                    |           |           |  |

Identify, by name or formula, the gas produced by liquid **C**.

(1)





- (c) Each of the compounds **C**, **D** and **E** contains three carbon atoms and one functional group, which is on the end of the carbon chain.
  - (i) Using this information and the results from parts (a) and (b), deduce the structures of **C** and **D**.

(2)

| Structure of <b>C</b> | Structure of <b>D</b> |
|-----------------------|-----------------------|
|                       |                       |
|                       |                       |
|                       |                       |
|                       |                       |
|                       |                       |
|                       |                       |

(ii) The mass spectrum of **E** has a molecular ion peak at m/z = 58. Using this information and the information in (c), deduce the structure of **E**.

(1)



(iii) Give a chemical test and its positive result to confirm the identity of the functional group in **E**.

(2)



(d) The apparatus shown was used to find the enthalpy change of combustion of one of the liquids **C**, **D** or **E**.





(i) List all the measurements you would make in carrying out this experiment.

(3)

(ii) Give **two** ways, other than changing the measuring instruments or repeating the experiment, in which the accuracy of the results using this apparatus could be improved.

(2)

(Total for Question 2 = 12 marks)

An experiment is carried out to determine the formula of an oxide of copper.



A sample of the copper oxide is reduced to copper by hydrogen gas using the apparatus shown.



# **Procedure**

- Step 1 Weigh the empty test tube.
- Step 2 Place two spatula measures of copper oxide in the test tube and reweigh.
- Step **3** Pass hydrogen into the test tube and, after a delay of a few seconds, light the gas at the hole at the end of the test tube.
- Step 4 Start heating the copper oxide.
- Step **5** After the copper oxide has been completely reduced, turn off the Bunsen burner, but continue to pass hydrogen over the product until it has cooled down.
- Step 6 Weigh the test tube and copper.
- (a) Give a reason why, in Step 3, there should be a delay of a few seconds before lighting the hydrogen at the end of the test tube.

|   | _    | -   |  |
|---|------|-----|--|
| r | ч    | ٠,  |  |
|   | - 11 | - 1 |  |
|   |      |     |  |



(b) (i) Complete the table of results.



| Measurement                        | Mass/g |
|------------------------------------|--------|
| Mass of test tube                  | 40.27  |
| Mass of test tube and copper oxide | 43.42  |
| Mass of test tube and copper       | 42.79  |
| Mass of copper in copper oxide     |        |
| Mass of oxygen in copper oxide     |        |

(ii) Use these results to calculate the formula of this copper oxide.

You must show your working.

[ $A_r$  values: Cu = 63.5 O = 16.0]





| (c) | The experiment was repeated. However, in Step <b>5</b> , both the Bunsen burner and the hydrogen supply were turned off while the apparatus cooled. | Meh. 4974 52529T1 / 183249T<br>E-mail:rashed.asha@gmail.co |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
|     | (i) State how the appearance of the solid in the test tube changes as the apparatus cools.                                                          | (1)                                                        |
|     |                                                                                                                                                     |                                                            |
|     | (ii) Explain how this change in the procedure affects the calculated formula of the copper oxide.                                                   | (2)                                                        |
|     |                                                                                                                                                     |                                                            |
|     |                                                                                                                                                     |                                                            |
|     |                                                                                                                                                     |                                                            |

(Total for Question 3 = 8 marks)





| Describe how 250.0 cm <sup>3</sup> of a standard solution should be prepared us                                                                        | Mob: +974 5528<br>E-mail:rashed.s |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| pre-weighed sample of 1.13 g of $H_2X$ .                                                                                                               | ing a                             |
|                                                                                                                                                        | (4)                               |
|                                                                                                                                                        |                                   |
|                                                                                                                                                        |                                   |
|                                                                                                                                                        |                                   |
|                                                                                                                                                        |                                   |
|                                                                                                                                                        |                                   |
|                                                                                                                                                        |                                   |
|                                                                                                                                                        |                                   |
|                                                                                                                                                        |                                   |
|                                                                                                                                                        |                                   |
|                                                                                                                                                        |                                   |
|                                                                                                                                                        |                                   |
|                                                                                                                                                        |                                   |
|                                                                                                                                                        |                                   |
|                                                                                                                                                        |                                   |
|                                                                                                                                                        |                                   |
|                                                                                                                                                        |                                   |
|                                                                                                                                                        |                                   |
| $25.0\mathrm{cm^3}$ of this $\mathrm{H_2X}$ solution was pipetted into a conical flask and titra $0.213\mathrm{moldm^{-3}}$ sodium hydroxide solution. | ted with                          |
| The equation for the reaction is                                                                                                                       |                                   |

$$H_2X(aq) + 2NaOH(aq) \rightarrow Na_2X(aq) + 2H_2O(I)$$

(i) The indicator used was phenolphthalein.

State the colour **change** at the end-point.

(1)

10

# **Results**



| Number of titration                     | 1     | 2     | 3     |
|-----------------------------------------|-------|-------|-------|
| Final burette reading/cm <sup>3</sup>   | 12.20 | 24.10 | 11.75 |
| Initial burette reading/cm <sup>3</sup> | 0.00  | 12.20 | 0.05  |
| Volume of NaOH used/cm <sup>3</sup>     | 12.20 | 11.90 | 11.70 |

(ii) Using appropriate titrations, calculate the mean titre in cm<sup>3</sup>.

(1)

(iii) Calculate the number of moles of H<sub>2</sub>X in the 250.0 cm<sup>3</sup> of solution.

(3)

(iv) Calculate the molar mass of  $H_2X$ , using your answer in (b)(iii) and the mass of  $H_2X$  given.

Give your answer to an appropriate number of significant figures.

(2)





(c) The maximum uncertainty **each** time a burette is read is  $\pm 0.05$  cm<sup>3</sup>.

| (i) | Calculate the percentage uncertainty in measuring the 11.70 cm <sup>3</sup> of |
|-----|--------------------------------------------------------------------------------|
|     | sodium hydroxide used in titration 3.                                          |

(1)

(ii) The percentage uncertainties in the three titrations are similar.

Suggest how the percentage uncertainty in a burette measurement could be reduced, without changing the apparatus. Justify your answer.

(2)

|  | <br> |  |
|--|------|------|------|------|------|------|------|------|------|--|
|  |      |      |      |      |      |      |      |      |      |  |
|  | <br> |  |
|  |      |      |      |      |      |      |      |      |      |  |
|  | <br> |  |
|  |      |      |      |      |      |      |      |      |      |  |
|  | <br> | <br> |      |      |      |      | <br> | <br> |      |  |
|  |      |      |      |      |      |      |      |      |      |  |
|  |      |      |      |      |      |      |      |      |      |  |

(Total for Question 4 = 14 marks)



**5** Limonene, an oil, can be extracted from oranges in four steps.



(a) In Step **1**, grated orange peel is added to some distilled water. The mixture is heated under reflux for about 10 minutes.

Draw a labelled diagram of the apparatus used to reflux the mixture.

(3)

(b) In Step 2 the mixture from Step 1 is distilled. The distillate contains a mixture of limonene and water.



In Step 3 the limonene and water mixture from Step 2 is poured into a separating funnel and pentane is added.

Limonene is much more soluble in pentane than in water.

The density of pentane is 0.626 g cm<sup>-3</sup>

(i) Complete the diagram of the separating funnel by drawing the aqueous and pentane layers and labelling them.





| (ii) | Describe how the separating funnel | is used to | obtain t | the pentane | layer |
|------|------------------------------------|------------|----------|-------------|-------|
|      |                                    |            |          |             |       |

|   | _ | _  | ъ.   |
|---|---|----|------|
| 1 | " | 70 | - N  |
|   |   | 0  | - 11 |
|   |   |    |      |





(c) In Step **4** the pentane is allowed to evaporate in a fume cupboard, leaving limonene.



150 mg of limonene is produced from 23.0 g of orange peel.

Calculate the percentage of limonene, by mass, extracted from the orange peel.

(1)

(d) 0.001 mol of limonene decolourised 0.32 g of bromine, Br<sub>2</sub>.

Explain what these results tell you about the structure of limonene.

[Use 
$$M_r$$
 (Br<sub>2</sub>) = 160]

(2)

(Total for Question 5 = 9 marks)

**TOTAL FOR PAPER = 50 MARKS** 



mrc

# The Periodic Table of Elements

| 0 (8) | (18) | 4.0 |
|-------|------|-----|
| 7     |      |     |
| 9     |      |     |
| 2     |      |     |
| 4     |      |     |
| 3     |      |     |
|       |      |     |
|       |      |     |
|       |      |     |
|       | Г    |     |
|       | ,    | 0.1 |
|       |      |     |
|       |      |     |
|       |      |     |
|       |      |     |
|       |      |     |
| 2     |      |     |

|                 |             | _                    |               |           |                        |      |    |                  |      |    |                    |    |       |              |                                 | _  |       |     |           |    |       |                                                         |                                   |
|-----------------|-------------|----------------------|---------------|-----------|------------------------|------|----|------------------|------|----|--------------------|----|-------|--------------|---------------------------------|----|-------|-----|-----------|----|-------|---------------------------------------------------------|-----------------------------------|
| 4.0<br><b>H</b> | helium<br>2 | 20.2                 | Ne            | neon      | 10                     | 39.9 | Ar | argon<br>18      | 83.8 | Ā  | krypton            | 36 | 131.3 | Xe           | xenon                           | 24 | [222] | R   | radon     | 98 |       | ted                                                     |                                   |
|                 | (17)        | 19.0                 | L             | fluorine  | 6                      | 35.5 | บ  | chlorine<br>17   | 79.9 | Br | bromine            | 35 | 126.9 | Ι            | iodine                          | 53 | [210] | At  | astatine  | 85 |       | seen repor                                              |                                   |
|                 | (16)        | 16.0                 | 0             | oxygen    | 8                      | 32.1 | S  | sulfur<br>16     | 79.0 | Se | selenium           | 34 | 127.6 | <u>a</u>     | tellurium                       | 52 | [506] | 8   | polonium  | 84 |       | 116 have t                                              | iticated                          |
|                 | (15)        | 14.0                 | z             | nitrogen  | 7                      | 31.0 | ۵  | phosphorus<br>15 | 74.9 | As | arsenic            | 33 | 121.8 | Sb           | antimony                        | 51 | 209.0 | Bi  | bismuth   | 83 |       | nbers 112-                                              | but not fully authenticated       |
|                 | (14)        | 12.0                 | U             | carbon    | 9                      | 28.1 | Si | Ē                | 72.6 | ge | germanium          | 32 | 118.7 | Sn           | tin                             | 20 | 207.2 | Ъ   | lead      | 82 |       | atomic nur                                              | but not fi                        |
|                 | (13)        | 10.8                 | В             | boron     | 5                      | 27.0 | ¥  | aluminium<br>13  | 69.7 | Ga | gallium            | 31 | 114.8 | I            | indium                          | 49 | 204.4 | F   | thallium  | 81 |       | Elements with atomic numbers 112-116 have been reported |                                   |
|                 | ,           |                      |               |           |                        |      |    | (12)             | 65.4 | Zu | zinc               | 30 | 112.4 | В            | cadmium                         | 48 | 200.6 | H   | mercury   | 80 |       | Elem                                                    |                                   |
|                 |             |                      |               |           |                        |      |    | (11)             | 63.5 | ŋ  | copper             | 29 | 107.9 | Ag           | silver                          | 47 | 197.0 | Αn  | plog      | 79 | [272] | Rg                                                      | oentgenium<br>111                 |
|                 |             |                      |               |           |                        |      |    | (10)             | 58.7 | Ż  | nickel             | 28 | 106.4 | Pd           | palladium                       | 46 | 195.1 | £   | platinum  | 78 | [271] | Ds                                                      | damstadtium 1<br>110              |
|                 |             |                      |               |           |                        |      |    | (6)              | 58.9 | ဝိ | cobalt             | 27 | 102.9 | 몺            | rhodium                         | 45 | 192.2 | Ļ   | iridium   | 77 | [368] | Mt                                                      | meitnerium damstadtium<br>109 110 |
| 1.0<br><b>T</b> | 1           |                      |               |           |                        |      |    | (8)              | 55.8 | Fe | iron               | 76 | 101.1 | Ru           | ruthenium                       | 44 | 190.2 | S   | osmium    | 76 | [277] |                                                         | hassium<br>108                    |
|                 |             |                      |               |           |                        |      |    | 6                | 54.9 | W  | manganese          | 25 | [86]  | ည            | molybdenum technetium ruthenium | 43 | 186.2 | Re  | rheninm   | 75 | [264] | Bh                                                      | bohrium<br>107                    |
|                 |             | mass                 | loc           |           | umber                  |      |    | (9)              | 52.0 | ე  | chromium manganese | 24 | 95.9  | Wo           | molybdenum                      | 42 | 183.8 | >   | tungsten  | 74 | [596] | Sg                                                      | seaborgium<br>106                 |
|                 | Key         | relative atomic mass | atomic symbol | name      | atomic (proton) number |      |    | (2)              | 50.9 | >  | vanadium           | 23 | 92.9  | <del>Q</del> | E                               | 41 | 180.9 | Тa  | tantalum  | 73 | _     |                                                         | dubnium<br>105                    |
|                 |             | relati               | ato           |           | atomic                 |      |    | (4)              | 47.9 | ï  | titanium           | 22 | 91.2  | Zr           | zirconium                       | 40 | 178.5 | Ŧ   | hafnium   | 72 | [261] | Rf                                                      | rutherfordium<br>104              |
|                 |             |                      |               |           |                        |      |    | (3)              | 45.0 | SC | scandium           | 21 | 88.9  | >            | E                               | 39 | 138.9 | La* | lanthanum | 22 | [227] |                                                         | actinium<br>89                    |
|                 | (2)         | 9.0                  | Be            | beryllium | 4                      | 24.3 | Mg | magnesium<br>17  | 40.1 | Ca | calcium            | 20 | 87.6  | S            | strontium                       | 38 | 137.3 | Ba  | barium    | 26 | [526] | Ra                                                      | radium<br>88                      |
|                 | (1)         | 6.9                  | :=            | lithium   | 3                      | 23.0 | Na | sodium<br>11     | 39.1 | ¥  | potassium          | 19 | 85.5  | Rb           | rubidium                        | 37 | 132.9 | ပ   | caesium   | 22 | [223] | 占                                                       | francium<br>87                    |

<sup>\*</sup> Lanthanide series

<sup>\*</sup> Actinide series

| 140    | 141          | 144       | [147]      | 150       | 152       | 157            | 159       | 163         | 165         | 167     | 169         | 173       | 175        |
|--------|--------------|-----------|------------|-----------|-----------|----------------|-----------|-------------|-------------|---------|-------------|-----------|------------|
| e<br>O | Ŗ.           | PN        | Pm         | Sm        | Eu        | В              | ТÞ        | Δ           | 운           | д       | Tm          | ΥÞ        | Ľ          |
| erium  | praseodymium | neodymium | promethium | samarinm  | europium  | gadolinium     | terbium   | dysprosium  | holmium     | erbium  | thulium     | ytterbium | lutetium   |
| 28     | 29           | 09        | 61         | 62        | 63        | 64             | 9         | 99          | 29          | 89      | 69          | 70        | 71         |
| 232    | [231]        | 238       | [237]      | [242]     | [243]     | [247]          | [245]     | [251]       | [254]       | [253]   | [256]       | [254]     | [257]      |
| 드      | Pa           | <b>¬</b>  | δ          | Pu        | Am        | C <sub>m</sub> | 胺         | უ           | Es          | Fm      | ΡW          | ٥         | ئ          |
| morium | protactinium | uranium   | neptunium  | plutonium | americium | aurium         | berkelium | californium | einsteinium | fermium | mendelevium | nobelium  | lawrencium |
| 06     | 91           | 92        | 93         | 94        | 95        | 96             | 4         | 86          | 66          | 100     | 101         | 102       | 103        |

