

MARK SCHEME for the May/June 2014 series

0580 MATHEMATICS

0580/22

Paper 2 (Extended), maximum raw mark 70

MMM. Hiremepapers.com

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2 Mark Scheme		Syllabus	Paper
	IGCSE – May/June 2014	0580	22

Abbreviations

- cao correct answer only
- dep dependent
- FT follow through after error
- isw ignore subsequent working
- oe or equivalent
- SC Special Case
- nfww not from wrong working
- soi seen or implied

Qu		Answers	Mark	Part Marks
1		1.49 or 1.491	1	
2	(a)	570 000	1	
	(b)	5.69×10 ⁵	1	
3		[x =] 2, [y =] - 3	2	B1 B1 or SC1 for reversed answers
4		7.06 or 7.063 to 7.064	2	M1 for $\frac{\left[\right]}{8} = \cos 28$ or better
5	(a)	(0, 5)	1	
	(b)	- 1	1	
6		101.4, 102.6	2	M1 for 8.45 and 8.55 seen If 0 scored, SC1 for one correct value in correct position on answer line or for two correct reversed answers
7		$2\frac{1}{2}\%$, 0.2, $\frac{43}{201}$, $\sqrt{0.1}$	2	B1 for 0.3, 0.21 and 0.025 s een or for three in correct order
8		$\left[\frac{1}{2} \times 1\frac{1}{2} = \right]\frac{3}{4} \text{ oe}$	B1	
		$\frac{5\times2}{6\times2}$ and $\frac{3\times3}{4\times3}$ oe or better	M1FT	
		$\frac{1}{12}$ oe working must be shown	A1	

Page 3		Mark Scheme		Syllabus	Paper
		IGCSE – May/June 20	14	0580 22	
9		3.17 or 3.174 to 3.175	3	M2 for $\frac{63-61}{63} \times 100$ $100 - \frac{61}{63} \times 100$ oe	
10	(a)	35	1	or M1 for $\frac{63-61}{63}$ oe	or $\frac{1}{63} \times 100$
	(b)	$\frac{3V}{A}$ or $3VA^{-1}$	2	M1 for multiplying by 3 or for dividing by $\frac{1}{3}$ or	
11		460	3	M1 for dividing by <i>A</i> M2 for $\frac{391 \times 100}{(100 - 15)}$ oe	
				or M1 for recognising 15)% soi	g 391 as (100 –
12		$-\frac{3}{5}$ oe	3	B2 for $5x + 3 = 0$ oe or B1 for a numerator 3(x+1)+2x[=0] seen	of
13		1.6 oe	3	M1 for $w = \frac{k}{\sqrt{x}}$ A1 for $k = 8$ Alternative method: M2 for $w\sqrt{25} = 4\sqrt{4}$	oe
14	(a)	p + r	1		
	(b)	$\frac{3}{2}$ p + $\frac{1}{2}$ r	2	M1 for correct route f	rom O to M
		2 • 2		or M1 for $\mathbf{p} + \frac{1}{2}$ their(a)	
15	(a)	$\begin{pmatrix} 22 & 18 \\ 27 & 31 \end{pmatrix}$	2	B1 for any correct column or row	
	(b)	14	1		

Page 4		Mark Scheme		Syllabus 0580	Paper
		IGCSE – May/	IGCSE – May/June 2014		22
16 (a) $2pq(2p$		2pq(2p-3q)		B1 for $pq(4p-6q)$ or $2q(2p^2-3pq)$ or $2p(2pq-3q^2)$	
	(b)	(u+4t)(1+x)		B1 for $1(u+4t) + x(u+4t)$ or $u(1+x) + 4t(1+x)$	
17	(a)	$5t^{25}$	2	B1 for $5t^k$ or mt^{25} ($m \neq 0$)
	(b)	-2	1		
	(c)	64	1		
18		576	4	M1 for $\frac{1458}{3456}$ or $\frac{3456}{1458}$	
				M1 dep for $\sqrt[3]{their fractions for the fraction of the set $	action
				M1 for (<i>their</i> cube roo	$(t)^2$
19		$\frac{x-1}{3}$ final answer		B2 for $(x-1)(x+7)$ or SC1 for $(x+a)(x+7)$ or $a + b = 6$ B1 for $3(x+7)$	(b) where $ab = -$
20	(a)	-3	1		
	(b)	39 - 7n oe	2	M1 for – 7 <i>n</i> [+ <i>k</i>]	
	(c)	53		M1 for <i>their</i> (b) = -33 provided <i>their</i> (b) is linear and t (c) is a positive integer	heir answer for
21	(a)	4.47 or 4.472[]		M2 for $\sqrt{6^2 - 4^2}$ or M1 for $[PM]^2 + 4^2$	$=6^2$ or $6^2 - 4^2$
	(b)	48.2 or 48.18 to 48.19	3	M2 for cos[correct an	gle] = $\frac{4}{6}$ oe
				or M1 for recognising	a correct angle

Page 5		Mark Scheme	_	Syllabus	Paper
		IGCSE – May/June 2014	1	0580	22
22	(a)	i,j	1		
		i, j, k, m, n	1		
		2	1		
	(b)	$\frac{2}{3}$	1		
	(c)	P	1		
	(d)	\subset or \subseteq	1		