
www.mrc-papers.com

Mob: +974 55249797 / 55258711 E-mail:rashed.saba@gmail.com

MATHEMATICS -CORE

TOPIC- Patterns & Sequences

Here are the first for	ur terms of a sequ	ience.				
	4	11	18	25		
Write down an expr	ession for the <i>n</i> th	term				
/		toriir.			n diti	
				÷		8.
A STATE OF THE STA	in the second			Answei	<i>r</i>	[2]
2						12-11-15
	-1,	3,	7,	11,	•••••	
Write down the <i>n</i> th	term for this sequ	ience.				
					Inswer	
					Inswer	
				 	Inswer	······································
	• .				Inswer	
These are the first for	ur terms in a sequ	ence.			(nswer	
These are the first for	ur terms in a sequ 21	ence.		A 13	(nswer	
	21	17				
These are the first for (a) Write down the	21	17		13	9	13-N-
	21	17		13	9	
(a) Write down the	21 next number in th	17	ce.	13	9	13-N-
(a) Write down the state(b) Write down the state	21 next number in the	17 is sequence g the sequ	ce.	13	9 ver(a)	13-N-

04		(a)	Write down the next two terms in the following sequence.								12-5	7-15
		(b)	Wr	ite dov	vn an e					quence in part (a).	····	[2]
,										Answer(b)	e e e e e e e e e e e e e e e e e e e	[2]
5	je.	(a)				next term			quences	s.	11-N-15	
			(i)	5	9	13	17					
			(ii)	3	6	12	24			Answer(a)(i)		[1]
										Answer(a)(ii)		[1]
	((b)	Her	e are tl	ne first	four term	s in a diff	erent seq	uence.			
								17		. 17		
			Fino	d an ex	pressio	n for the	nth term o	of this sec	quence.			
										Answer(b)		[2]

	(a	7,	13,	19,	25,	31,			Mob: + E-mail:chyr	RASHED 3378750 arc.inuhammad@ymall.	com	
	(b)	9,	16,	25,	36,	49,						[2
												[2]
07	(a)	(i)	Write d				6,		18,		11-	-J-15
								A	Inswer(a)(i)		,	[2]
		(ii)						ing this sequ				[1]
	(b)						ce is $4n - 3$ is sequence		÷			
							Ansı	wer(b)				[1]

Find the *n*th term of each sequence.

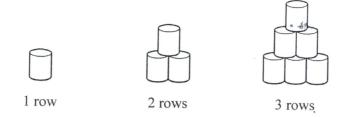
For Examiner's Use

8	(a) Wi	rite down the next term and the rule for finding the next term for the following sequences.	
	(i)	3, 9, 27, 81,	
	(ii)	Answer(a)(i) Next term rule	[2]
	(iii)	Answer(a)(ii) Next term rule	[2]
	(iv)	Answer(a)(iii) Next term rule	[2]
	(b) (i)	Answer(a)(iv) Next term rule Write down the next two terms of this sequence.	[2]
	(ii)	5, 13, 21, 29,	[2]
	(iii)	Answer(b)(ii) [Find the 100th term.	[2]
		Answer(b)(iii)[1]

9	(a)) He	re are the first four terms of a sequence.	
			5 8 11	. 14
		(i)	Write down the next term in this sequence.	
				Armunu (a)(a)
		(ii)	Write down the rule for finding the next term of t	Answer(a)(i)[1]
			Answer(a)(ii)	[1]
		(iii)	Find an expression for the <i>n</i> th term of this sequen	
				Answer(a)(iii)[2]
		(iv)	Explain why the number 300 is not in this sequence	
			Answer(a)(iv)	[1]
	(b)	Her	e are the first four terms of another sequence.	
			4 7 11	16
		(i)	Write down the next two terms in this sequence.	
				·
				<i>Answer(b)</i> (i) [2]
		(ii)	Write down the rule for continuing this sequence.	

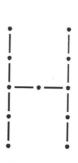
For each of these sequences, write down the next term and the rule for continuing the sequence.

(i) 8, 11, 14, 17, ...


					Next term is
				The rule is	[2]
(ii)	25,	17	, 9,	1,	
					Next term is
				Tri	
				The rule is	[2]
(iii)	2,	4,	7,	11,	
					Next term is
				The rule is	[2]
(iv)	1,	8,	27,	64,	
					Next term is
				The rule is	[2]

11 4 (2	Write down the next two terms in each of these sequences.	7-32-17
	(i) 8, 14, 20, 26,	
	·	
		[2]
	(ii) 12, 10, 7, 3,	
		[2]
, (b	Find the <i>n</i> th term of this sequence.	
	14, 25, 36, 47,	
		[2]
(c)	Work out the second term of the sequence whose <i>n</i> th term is $5(3-2)$	(2n).
		[1]
(d)	1, 4, 9, 16,	
	The <i>n</i> th term of this sequence is n^2 .	
	Use this information to write down the <i>n</i> th term of each of these seq	uences
	(i) 2, 5, 10, 17,	
		[1]
	(ii) 3, 12, 27, 48,	
		[1]

[2]


Complete the table for 4 rows and 5 rows.

Number of rows	1	2	3 -	4	5
Number of cans	1	3	6		

1 (a) A:	solid has 6 fa I the edges h	aces, 8 vertice ave the same	es and 12 e length.	dges.					
Wı	rite down the	e mathematic	al name of	this solid.					
(b) He	re is a seque	nce of diagra	ms made fi	rom identica	l square tile				[1]
I	Diagram 1	Diagram :	2	Diagram 3	3	Diag	gram 4		
(i) (ii)	On the grid	d, draw Diag the table.	ram 4.						[1]
	Diag	ram	1	2	3	4	5		
	Num	ber of tiles	1	5	9				
(iii)	Find an ex	pression, in to	erms of n , f	for the numb	er of tiles i	n Diagram	n.		[2]
(iv)	Find the nu	ımber of tiles	in Diagran	n 19.		•••••			[2]
(v)	A box conta	ains 98 of the	ese tiles.						[1]
		am x is made		any tiles as p	oossible fro	m this box.			
		he value of x .							
	(b) When	Diagram <i>x</i> is	made, how	/ many tiles					[2]
© UCLES 2016			n	9580/33/M/J/16			•••••	••••••	. [1]

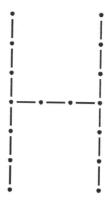


Diagram 1

Diagram 2

Diagram 3

(a) Complete the table for the number of lines and the number of dots in Diagram 3 and Diagram 4.

Diagram	1	2	3	4
Lines	5	10		
Dots	6	11		

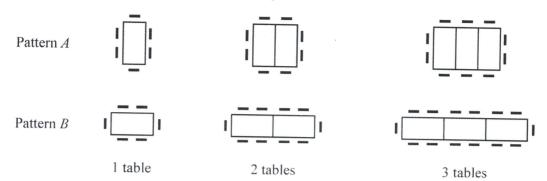
[2]

- (b) For Diagram n, write down an expression, in terms of n, for the number of
 - (i) lines,

(ii) dots.

(c) Work out the number of lines and the number of dots in Diagram 20.

Answer(c) Number of lines =


Number of dots =[2]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

15 Tables and chairs can be arranged in two different patterns.

(a) Complete the following table.

Number of tables	1	2	3	4	8
Number of chairs in Pattern A	6	8			
Number of chairs in Pattern B	6	10			

(b) How many chairs are needed with *n* tables

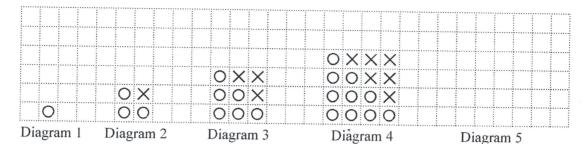
(*)		n	
(i)	ın	Pattern	A.

Answer(b)(i)	[2]
-------------	---	-----

(ii) in Pattern B?

(c) Sofia needs to arrange tables to seat 66 people.

Which pattern uses the least number of tables and by how many?


Answer(c) Pattern by tables [3]

[5]

16	(a)	Her Wri	re are three differ te the missing t	erent sequerms in t	uences. the spaces provide	ded.	
		(i)	2,	8,	14, 2	20,	[1]
		(ii)	1,	4,	9,	, 25	[1]
		(iii)	,	12,	7, 2	2,	[2]
	(b)	Here	e is the rule for	finding t	he next term in a	another sequence.	
			D	ouble t	he previous to	term and subtract 1.	
		The	first two terms	in this se	equence are 3 and	d 5.	
		(i)	Work out the n	ext two	terms in the seque	uence.	
						*	
						Answer(b)(i) ,	[2]
			Complete the f				
			All the terms in	this seq	uence are	numbers.	[1]
	(c)	Here	is the start of a	sequenc	e of stick patterns	ns.	
			.				
			Pattern 1 8 sticks		Pattern 2 13 sticks	Pattern 3 18 sticks	
		(i)]	Find the numbe	r of stick	s in Pattern 4.		
						Answer(c)(i)[
	. (ii) '	Write down an	expressio	on for the number	er of sticks in Pattern n .	1]
						Answer(c)(ii)[2	2]
	(i	ii) (One pattern in th	ne sequer	nce has 98 sticks.		
		V	Which pattern n	umber is	this?		
						Answer(c)(iii)[2]

For Examiner's Use

Here are the first four diagrams in a sequence.

(a) On the grid, draw Diagram 5.

(b) Complete the table below for Diagram 4 and Diagram 5.

Diagram number	Number of Os	Number of Xs	Total number of Os and Xs
1	1	0	1
2	3	1	4
3	6	3	9
4			
5		7	

[2]

[1]

(c) Find an expression, in terms of n, for the total number of Os and Xs in Diagram n.

Answer(c).....[1]

(d) Find the total number of Os and Xs in Diagram 23.

Answer(d).....[1]

(e) Describe in words the rule for continuing the sequence for the number of O_s .

1, 3, 6, ...

Answer(e).....[1]

A sequence of patterns is made from lines and dots. The first three patterns in the sequence are shown.

	Datte				ttann						2							*				i	
Ĺ	 			 									Ť										
																•••••			†			;	
	 	•			•					•		•											
1				 -					-	_	_	_	ļ						J		i	li	
	•			•		•			•		•												
-	 	8	:	 	8			÷		±	÷		÷		i				1	ļ		: :	:
													1	1									
1		;				:	1	:	1				:		1		1		1	:	1	1	1
1					:	1				•			:	1	1				1	7	*	,	·
				,		*		· · · · · · · · · · · · · · · · · · ·	,	·	-,		· · · · · · · · · · · · · · · · · · ·	.,	,					.,			

Pattern 1

Pattern 2

Pattern 3

Pattern 4

(a) Draw Pattern 4 on the grid.

[1]

(b) Complete the table.

Pattern	1	2	3	4	10
Number of dots	2	3			
Number of lines	4	7			

[4]

- (c) Find an expression, in terms of n, for
 - (i) the number of dots in Pattern n,

.....[1]

the number of lines in Pattern n.

.....[2]

(d) One of these patterns has 76 lines.

Work out how many dots are in this pattern.

.....[2]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

For Examiner's Use

			T		:	:		 		· · · · · · · ·		·····		 	 	 ,	 	
	ļ							 										
	ļ		ļļ			ļ	ļ	 										
	ļ		ļ				<u> </u>	 										
									X	X	X	×	X					
					X			 	X	×	×	×	×	 				
X	×	X		×					×	X	X	×	X	 	 	 	 	

Diagram 1

Diagram 2

Diagram 3

Diagram 4

The number of crosses in each Diagram forms a sequence.

(a) On the grid draw Diagram 4.

[1]

(b) Write down the number of crosses needed to draw Diagram 5.

Answer(b)[1]

(c) Diagram 1 has 1 row of 3 crosses. Diagram 2 has 2 rows of 4 crosses.

(i) Complete this statement for Diagram n.

Diagram n has n rows of _____ crosses.

[1]

(ii) Write down, in terms of n, how many crosses are needed to draw Diagram n.

Answer(c)(ii)

[1]

(iii) Find the number of crosses needed to draw Diagram 20.

Answer(c)(iii)[1]

For Examiner's Use

1	1	i				,			1	y	T	7
1	1	1			1				1	1	i .	i
!	!	1	1		i						1	1
i	1				1	1			1			1
i	i							1	1	i i		
 										1	1	1
	!				1					,	1	T
i			1								1	1
1	1										i	i
1	1										i	F
 												t
i											·	·
1	1										ł	i
1	1											i
1						i		,			1	ł.
i	1					1		1				i
 .,	1					·					t	1
!		1	- 1	i	1							
i			1		1	1	1	i				
1	i i	1	1				i	1	1			í
!	1 1	1	i	i	- 1			!	1	1		i .
 			!				i					J
i	1											
1						1	1		t	i		t
!		- 1	1	- 1	i	1			!	1		1
1					i	- 1	i		1			
			1	- 1	1	- 1	1	i	i	i		
	-	,					!	1	1	1		1
		- 1	- 1	i	i	1	,				1	
					1	- 1	i	i	;			
	1	- 1		!	1		1	1	1	i	i	
	1	- 1	- 1	- 1		- 1		!	1	t	i	
 9					i		i					
		_	•			-						

Diagram 1

Diagram 2

Diagram 3

Diagram 4

- (a) The pattern of diagrams above forms a sequence.
 - (i) On the grid, draw Diagram 4.

[1]

[2]

(ii) Complete the table.

Diagram	1	2	3	4	5
Number of dots	4	6			

(b) Find the number of dots in Diagram n.

Answer(b)	[2]

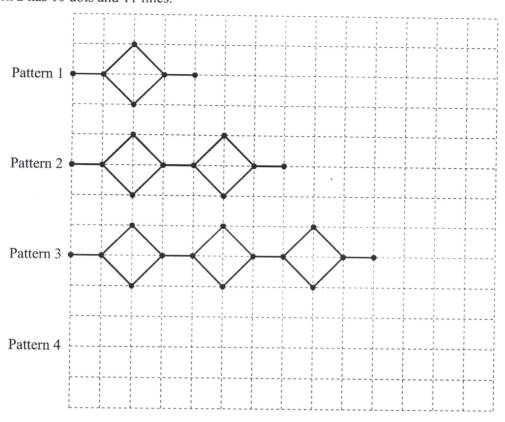
(c) Find the number of dots in Diagram 48.

(d) There are 3 one centimetre squares in Diagram 2.

Find the number of one centimetre squares in Diagram 5.

Answer(d) [2]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.


University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Patterns shown below form a sequence.

Pattern 1 has 6 dots and 6 lines.

Pattern 2 has 10 dots and 11 lines.

(a) On the grid, draw Pattern 4.

[1]

(b) (i) Find the number of dots in Pattern 5.

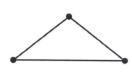
Answer(b)(i)[1]

(ii) Explain how you worked out your answer in part (b)(i).

Answer(b)(ii) ______[1]

(c) Write down an expression, in terms of n, for the number of dots in Pattern n.

Answer(c) [2]


(d) The number of dots in Pattern n is 62.

Find n.

Answer(d) n = [2]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

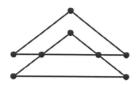


Diagram 2

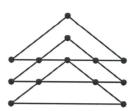


Diagram 3

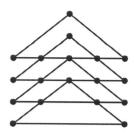


Diagram 4

Diagrams 1 to 4 show a sequence of shapes made up of lines and dots at the intersections of lines.

(a) (i) Complete the table showing the number of dots in each diagram.

Diagram	1	2	3	4	5	6
Dots	3	8	13			

[3]

(ii) Write down the rule for continuing the sequence of dots.

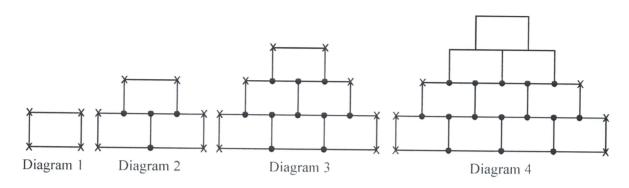
(iii) Write down an expression, in terms of n, for the number of dots in Diagram n.

(iv) Find the number of dots in Diagram 15.

- (b) The dots are joined by sloping lines and horizontal lines.
 - (i) Diagram 1 has 2 sloping lines and Diagram 2 has 6 sloping lines.

Find the number of sloping lines in Diagrams 3 and 4.

Answer(b)(i) Diagram 3


(ii) Write down an expression, in terms of n, for the number of sloping lines in Diagram n.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

Here is a sequence of diagrams made using identical rectangles. A dot is shown at the junction of three lines. A cross is shown at the junction of two lines.

J-31-17

(a) Write down the order of rotational symmetry of Diagram 1.

.....[1]

(b) Complete Diagram 4 using dots and crosses.

[1]

(c) Complete the table for Diagram 4 and Diagram 5.

Diagram	1	2	3	4	5
Number of dots	0	4	10		
Number of crosses	4	6	8		

[3]

(d) (i) Describe, in words, the rule for continuing the sequence for the number of dots.

.....[1]

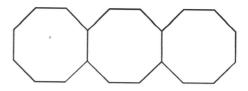
(ii) The expression for the number of dots in Diagram n is $n^2 + n - 2$.

Find the number of dots in Diagram 12.

.....[2]

(e) (i) Write down an expression for the number of crosses in Diagram n.

.....[2]


(ii) Diagram n has 100 crosses.

Find the value of n.

 $n = \dots [2]$

Pattern 1

Pattern 2

Pattern 3

(a) Write down the mathematical name of the polygon in Pattern 1.

<i>Answer(a)</i>

(b) Complete the table for the number of vertices (corners) and the number of lines in Pattern 3, Pattern 4 and Pattern 7.

Pattern	1	2	3	4	7
Number of vertices	8	14			
Number of lines	8	15			

[5]

(c) (i) Find an expression for the number of vertices in Pattern n.

Answer(c)(i) [2]

(ii) Work out the number of vertices in Pattern 23.

Answer(c)(ii)[1]

(d)	Find an	expression	for t	he	number	of	lines	in	Pattern	n
-----	---------	------------	-------	----	--------	----	-------	----	---------	---

For Examiner's Use

Answer(d)[2]
------------	----

(e) Work out an expression, in its simplest form, for

(number of lines in Pattern n) – (number of vertices in Pattern n).

Answer(e) [2]

Question 9 is printed on the next page.

25	(a)	Write down	the	mathematical	name	of a	polygon	with 8	sides.
----	-----	------------	-----	--------------	------	------	---------	--------	--------

Answer(a)[1]

(b) Calculate the interior angle of a regular 8-sided polygon.

Answer(b) [3]

(c)

Diagram 1

Diagram 2

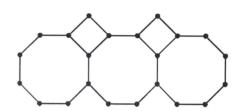


Diagram 3

The pattern of diagrams above forms a sequence.

(i) Complete the table.

Diagram	1	2	3	4	5
Number of dots	8	15	7		-

[2]

(ii) Find an expression, in terms of n, for the number of dots in Diagram n.

Answer(c)(ii)[2]

(iii) Find the number of dots in Diagram 10.

Answer(c)(iii) [1]

(iv) Find the value of n for a diagram with 92 dots.