
www.mrc-papers.com

Matter and materials: 7

TOPIC- Density, **pressure**, compressive and tensile forces, **HOOKE'S LAW**, modulus of elasticity (Young), Experiment, elastic potential energy

(a)	Define <i>pressure</i> .		
(b)	Use the kinetic model to e	explain the pressure exerted by	[1] / a gas.
(c)	Explain whether the collisinelastic.		of an ideal gas are elastic or
		A RANCED A	
		(Mrc)	
			[2]
		CLASSIED	[2]
		International Examinations Papers Mob: +974 55249797 / 55258711 E-mail:reshed.saba@gmail.com	

© UCLES 2013

9702/21/M/J/13

[Turn over

Answer all the questions in the spaces provided.

(a)	(i)	Define pressure.		
				[1]
	(ii)	State the units of pre	ssure in base units.	
				[1]
(b)	The	pressure p at a depth	h in an incompressible fluid of	density $ ho$ is given by
			$p = \rho g h$,	
	whe	re g is the acceleration	n of free fall.	
	036	base units to check tr	ne homogeneity of this equation	n.
	*****	·····		
	•••••		SERGIN	
			(Amrc)	ro1
				[3]
			CLASSIFIED	
			International Examinations Papers Mob: +974 55249797 / 55258711 E-mail:rashed.saba@gmail.com	
		a .		

	10	
(a)	Define <i>pressure</i> .	For
		Examine Use
	[1]	
(b)	Explain, in terms of the air molecules, why the pressure at the top of a mountain is less than at sea level.	
		2
	[3]	
(c)	Fig. 3.1 shows a liquid in a cylindrical container.	
	container	
	liquid ASSIF Ho.250m	
	Intenational Examinations Papers Flob: +974 55249797 / 55.587 11 Establishment subactional Cons	
	Fig. 3.1	
	The cross-sectional area of the container is 0.450 m ² . The height of the column of liquid	

The cross-sectional area of the container is $0.450\,\text{m}^2$. The height of the column of liquid is $0.250\,\text{m}$ and the density of the liquid is $13\,600\,\text{kg}\,\text{m}^{-3}$.

(i) Calculate the weight of the column of liquid.

weight = N [3]

3

(ii)	Calculate the pressure liquid.	e on	the base	of the containe	er caused	by the v	weight of	f the
	•							

,	pressure = Pa [1]
(iii)	Explain why the pressure exerted on the base of the container is different from the value calculated in (ii).
	[1]

4	(a)	Compare the molecular motion of a liquid with				
		(i)	a solid,			
				[2		
		(ii)	a gas.			
				[1		
	(b)	(i)	A ductile material in the form of a wire is stretched up to its breaking point. On Fig sketch the variation with extension x of the stretching force F .			
			f ductile material			
		(==\	CLASSIFIED	[1]		
		(ii)	On Fig. 4.2, sketch the variation with extension x of the stretching force F for a b material up to its breaking point. E-mail:reshed.saba@cmail.com	rittle		
			F brittle material			
			0			
			Fig. 4.2	[1]		
	(c)	Des	cribe a similarity and a difference between ductile and brittle materials.			
		simil	ilarity:	•••••		
		diffe	rence:			
				[2]		

9702/22/O/N/14

[Turn over

© UCLES 2014

Fig. 4.1 shows a metal cylinder of height 4.5 cm and base area 24 cm².

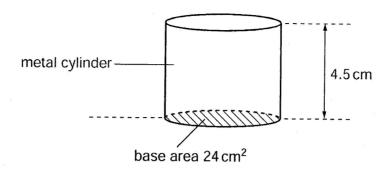


Fig. 4.1

The density of the metal is $7900 \, \text{kg} \, \text{m}^{-3}$.

(a) Show that the mass of the cylinder is 0.85 kg.

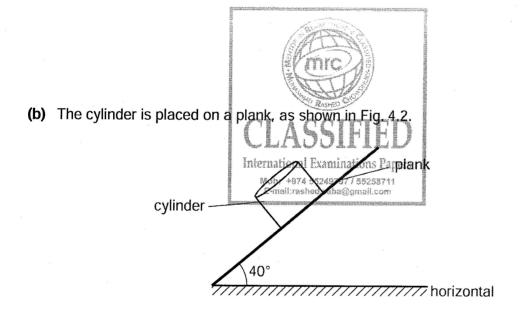


Fig. 4.2

The plank is at an angle of 40° to the horizontal.

[2]

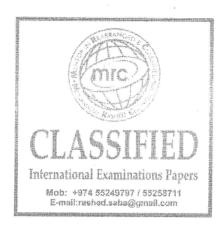
Calculate the pressure on the plank due to the cylinder.

pressure =		Pa	[3]
------------	--	----	-----

(c) The cylinder then slides down the plank with a constant acceleration of $3.8\,\mathrm{m\,s^{-2}}$. A constant frictional force f acts on the cylinder.

Calculate the frictional force f.

N [3]


A steel wire of cross-sectional area $15\,\text{mm}^2$ has an ultimate tensile stress of $4.5\times10^8\,\text{N}\,\text{m}^{-2}$.

(a) Calculate the maximum tension that can be applied to the wire.

tension =		. N	[2]
-----------	--	-----	-----

(b) The steel of the wire has density $7800 \, \text{kg} \, \text{m}^{-3}$. The wire is hung vertically.

Calculate the maximum length of the steel wire that could be hung vertically before the wire breaks under its own weight.

length = m [3]

Please turn over for Question 8.

(a)	State the evidence for the assumption that				
	(i)	there are significant forces of attraction between molecules in the solid state	te,		
			[1]		
	(ii)	the forces of attraction between molecules in a gas are negligible.			
			[1]		
(b)	Ехр	ain, on the basis of the kinetic model of gases, the pressure exerted by a ga	is.		
	•••••		***********		
			•••••		
			••••		
(c)		d nitrogen has a density of 810 kg m ⁻³ . The density of nitrogen gas at erature and pressure is approximately 1.2 kg m ⁻³	t room		
	Sugg	est how these densities relate to the spacing of nitrogen molecules in the nthe gaseous states.	liquid		
		International Examinations Papers			
		1960t: +974:552497971:95258771 E-mail:rashed.saba@gmail.com	••••••		
			[2]		

(a)	State two assumptions of	the simple kinetic model of a	gas.
	1		
	2		
			[2]
(b)	Use the kinetic model of ga a pressure on the sides of	ases and Newton's laws of mo its container.	otion to explain how a gas exerts
	- Control of the Cont		[3]
	AND CONTRACT OF THE PROPERTY O	(Arc)	
	######################################		
	***************************************	CLASSIFIED	

International Examinations Papers

Mob: +974 55249797 / 55258711
E-mail:rashed.saba@gmail.com

(a)	Describe apparatus that	demonstrates Brownian motion	n. Include a diagram.
			,
			[2]
(b)	Describe the observations	made using the apparatus in	(a).
		RASHED CO	
		CLASSIFIED	
		International Examinations Papers	
		••••••••••••••••••••••••••••••••••••••	[=]
(c)	State and explain two cond from the observations in (b)	clusions about the properties of	f molecules of a gas that follow
	1		
	2		
	2		
			[2]

The Brownian motion of smoke particles in air may be observed using the apparatus shown in Fig. 2.1.

For Examiner's Use

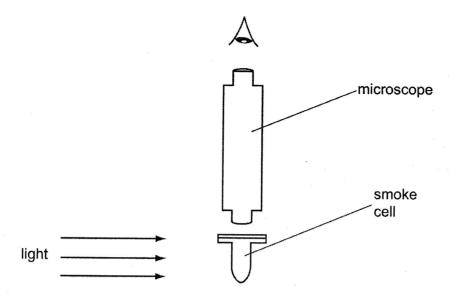


Fig. 2.1

(a)	Describe what is seen whe	n viewing a smoke particle thr	ough the microscope.
		CI ACCIUII	[2]
(b)	Suggest and explain what smoke particles when larg through the microscope.	difference, if any, twould be per smoke particles than thos	observed in the movement of se observed in (a) are viewed
			[2]

Some smoke particles are viewed through a microscope, as illustrated in Fig. 5.1.

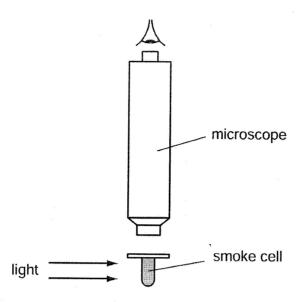


Fig. 5.1

wnian motion is observed.		
Explain what is meant by E	Brownian motion	
	CLASSIFIED	
	Mob: +974 55249797 / 55258711	
molecules as assumed in t	he kinetic theory of gases.	vidence for the movement or
		[2]
		[2]
	Suggest and explain why molecules as assumed in t	Explain what is meant by Brownian motion. CLASSIFIED International Examinations Papers Mob.: +974 55249797 / 55258711 Suggest and explain why Brownian motion provides emolecules as assumed in the kinetic theory of gases. Smoke from a poorly maintained engine contains large passuggest why the Brownian motion of such large particles

(a)	Exp	plain what is meant by	the internal energy of a substa	nce.
		•••••••••••••••••••••••••••••••••••••••		
	••••			[2]
(b)	Stat	te and explain, in mo	lecular terms, whether the in	ternal energy of the following
	incr	eases, decreases or d	oes not change.	0,
	(i)	a lump of iron as it is	cooled	
		•••••••••••••••••••••••••••••••••••••••		
				[3]
	(ii)	some water as it evap	orates at constant temperature	9
			RURANGED	
			(CLASSIFIED	[3]
			International Examinations Papers	
			Mob: +974 55249797 / 55258711 E-mailtrashed.saba@gmail.com	

Distinguish between evaporation and	boiling.		
evaporation:	************************************		
boiling:			
	***************************************	***************************************	[4]

(a)	(i)	State one similarity between the processes of evaporation and boiling.	E	For xamin Use
			[1]	030
	(ii)	State two differences between the processes of evaporation and boiling. 1		
		2		
(b)	Tita	unium metal has a density of 4.5 g cm ⁻³ .	[4]	
	A c	ube of titanium of mass 48 g contains 6.0×10^{23} atoms.		
	(i)	Calculate the volume of the cube.		
		volume = cm ³	[1]	

		,
(ii)	Est	timate
	1.	the volume occupied by each atom in the cube,
	٠	volume = cm ³ [1]
	2.	the separation of the atoms in the cube.