
Mathematical Problems CH-07 part-02

Q. Calculate the force required to take away a horizontal wire of length 0.04 m from the surface of water. [Surface tension of water = $72 \times 10^{-3} \text{ Nm}^{-1}$]

Q. Calculate the force required to take away a flat circular plate of radius 5cm from the surface of water. [Surface tension = $72 \times 10^{-3} \text{ Nm}^{-1}$]1

Q. Calculate the force required to take away a horizontal **wire** of length 0.08 m from the surface of water. [Surface tension of water = $72 \times 10^{-3} \text{ Nm}^{-1}$][Ans. $576 \times 10^{-5} \text{ N}$]

Q. Calculate the force required to take away a flat circular plate of radius 4 cm from the surface of water. [Surface tension of water = $72 \times 10^{-3} \text{ Nm}^{-1}$] [Ans. $1808 \times 10^{-5} \text{ N}$]

*Q. The force required **to take away** a horizontal wire of length 4 cm from the surface of water is 5.824×10^{-3} N. Calculate the **surface tension** of water. [Ans.72 $\times 10^{-3}$ Nm⁻¹]

*Q. The force required to take away a horizontal wire of length 0.05 m from the surface of water
is 7.28 $ imes$ 10 $^{-3}$ N. Calculate the surface tension of water.
*Q. A film of soap formed on a rectangular frame of length 10 cm dipping into a soap solution. The frame hangs from the arm of a balance. An extra weight of 0.42 g placed was in the opposite pan to balance the pull of the frame. Calculate surface tension of the soal solution.
*Q. A film of soap formed on a rectangular frame of length 8 cm dipping into a soap solution. The frame hangs from the arm of a balance. An extra weight of 0.5 g placed in the opposite pan to balance the pull of the frame. Calculate the surface tension of the soap solution.2

'Q.	In order to raise a horizontal wire of length 0.05m from the surface of water, a force of 7.28x10 ⁻³ N along with the weight of the wire is required. Determine the surface tension of the water.
'Q.	Calculate the maximum force that is needed to raise a needle of length of 4cm placed gently on the surface of water.[Surface tension of water is 72x10 ⁻³ Nm ⁻¹][5.76x10 ⁻³ N]